Cancer Chemotherapy and Pharmacology

, Volume 81, Issue 2, pp 399–411 | Cite as

Prediction of neutrophil reduction using plasma paclitaxel concentration after administration in patients with uterine, ovarian, or cervical cancers in an outpatient clinic

  • Motoaki Ishikawa
  • Michiyasu Kawai
  • Toshio Maeda
  • Yoshiyuki KagawaEmail author
Original Article



Plasma paclitaxel (PTX) concentration 24 h or later after PTX administration may predict myelosuppression. Here, we explored predictive markers for neutropenia induced by intravenous administration of PTX in an outpatient clinic.


Thirty women suffering from uterine, ovarian or cervical cancer were enrolled in this study. PTX (mean dose: 167 mg/m2) was intravenously infused and followed by carboplatin. Plasma samples were obtained 4 h after PTX administration. Genotyping was carried out for CYP3A5*3, ABCB1 1236 C>T, 2677 G>T/A, and 3435 C>T.


There was no significant relationship between genotype and reduced neutrophil count. Neutrophil reduction rate correlated with the patient’s height, neutrophil count on the day of administration, and plasma PTX concentration. Multiple regression analysis with those three indices explained 47.7% of the interindividual variability of the neutrophil reduction rate. The model with plasma PTX concentration, patient’s height, and plasma 6-α-hydroxy-paclitaxel /PTX concentration ratio also explained 30.0% of the interindividual variability for the neutrophil nadir count after PTX administration.


These results indicate that neutrophil reduction after PTX administration can be partially predicted by multiple regression analysis involving plasma concentration data collected at outpatient clinics.


Paclitaxel Outpatient clinic Neutrophil reduction 6-α-hydroxy-paclitaxel Ovarian cancer 



The genotyping assistance of Mrs. Ayami Sakakibara and Mr. Kiyoaki Ishino (Laboratory of Clinical Pharmaceutics) was greatly appreciated. This study was supported by JSPS KAKENHI Grant number JP22590138.

Compliance with ethical standards

Conflict of interest

We have no conflicts of interest to declare in relationship to this study.


  1. 1.
    Spratlin J, Sawyer MB (2007) Pharmacogenetics of paclitaxel metabolism. Crit Rev Oncol Hematol 61(3):222–229. Scholar
  2. 2.
    Rodríguez-Antona C (2010) Pharmacogenomics of paclitaxel. Pharmacogenomics 11(5):621–623. Scholar
  3. 3.
    Wiernik PH, Schwartz EL, Strauman JJ, Dutcher JP, Lipton RB, Paietta E (1987) Phase I clinical and pharmacokinetic study of taxol. Cancer Res 47(9):2486–2493PubMedGoogle Scholar
  4. 4.
    Soyama A, Saito Y, Hanioka N et al (2001) Non-synonymous single nucleotide alterations found in the CYP2C8 gene result in reduced in vitro paclitaxel metabolism. Biol Pharm Bull 24(12):1427–1430. Scholar
  5. 5.
    Nakajima M, Fujiki Y, Noda K et al (2003) Genetic polymorphisms of CYP2C8 in Japanese population. Drug Metab Dispos 31(6):687–690. Scholar
  6. 6.
    Wolking S, Schaeffeler E, Lerche H, Schwab M, Nies AT (2015) Impact of genetic polymorphisms of ABCB1 (MDR1, P-glycoprotein) on drug disposition and potential clinical implications: Update of the literature. Clin Pharmacokinet 54:709–735. Scholar
  7. 7.
    Iihara H, Fujii H, Yoshimi C, Yamada M, Suzuki A, Matsuhashi N, Takahashi T, Yoshida K, Itoh Y (2016) Control of chemotherapy-induced nausea in patients receiving outpatient cancer chemotherapy. 21(2), 409–418.
  8. 8.
    Ozols RF, Bundy BN, Greer BE, Fowler JM, Clarke-Pearson D, Burger RA et al (2003) Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: a Gynecologic Oncology Group study. J Clin Oncol 21(17):3194–3200CrossRefPubMedGoogle Scholar
  9. 9.
    Katsumata N, Yasuda M, Isonishi S, Takahashi F, Michimae H, Kimura E,et al (2013) Long-term results of dose-dense paclitaxel and carboplatin versus conventional paclitaxel and carboplatin for treatment of advanced epithelial ovarian, fallopian tube, or primary peritoneal cancer (JGOG 3016): a randomised, controlled, open-label trial. Lancet Oncol 14(10):1020–1026CrossRefPubMedGoogle Scholar
  10. 10.
    Gianni L, Kearns CM, Giani A et al (1995) Nonlinear pharmacokinetics and metabolism of paclitaxel and its pharmacokinetic/pharmacodynamic relationships in humans. J Clin Oncol 13(1):180–190. Scholar
  11. 11.
    Ohtsu T, Sasaki Y, Tamura T, Miyata Y, Nakanomyo H, Nishiwaki Y, Saijo N (1995) Clinical pharmacokinetics and pharmacodynamics of paclitaxel: a 3-hour infusion versus a 24-hour infusion. Clin Cancer Res 1(6):599–606PubMedGoogle Scholar
  12. 12.
    Joerger M, Huitema AD, Richel DJ et al (2007) Population pharmacokinetics and pharmacodynamics of paclitaxel and carboplatin in ovarian cancer patients: a study by the European organization for research and treatment of cancer-pharmacology and molecular mechanisms group and new drug development group. Clin Cancer Res 13(21):6410–6418. Scholar
  13. 13.
    Basileo G, Breda M, Fonte G, Pisano R, James CA (2003) Quantitative determination of paclitaxel in human plasma using semi-automated liquid-liquid extraction in conjunction with liquid chromatography/tandem mass spectrometry. J Pharm Biomed Anal 32(4–5):591–600. Scholar
  14. 14.
    Balram C, Zhou Q, Cheung YB, Lee EJ (2003) CYP3A5*3 and *6 single nucleotide polymorphisms in three distinct Asian populations. Eur J Clin Pharmacol 59(2):123–126. Scholar
  15. 15.
    Jelliffe RW, Jelliffe SM (1971) Estimation of creatinine clearance from changing serum-creatinine levels. Lancet 7726(2):710CrossRefGoogle Scholar
  16. 16.
    Panday VR, Huizing MT, van Warmerdam LJ et al (1998) Pharmacologic study of 3-hour 135 mg M-2 paclitaxel in platinum pretreated patients with advanced ovarian cancer. 3(38), 231–236.
  17. 17.
    Tanabe M, Ieiri I, Nagata N et al (2001) Expression of P-glycoprotein in human placenta: relation to genetic polymorphism of the multidrug resistance (MDR)-1 gene. J Pharmacol Exp Ther 297(3):1137–1143PubMedGoogle Scholar
  18. 18.
    Jiko M, Yano I, Sato E et al (2007) Pharmacokinetics and pharmacodynamics of paclitaxel with carboplatin or gemcitabine, and effects of CYP3A5 and MDR1 polymorphisms in patients with urogenital cancers. Int J Clin Oncol 12(4):284–290. Scholar
  19. 19.
    Pfeil AM, Vulsteke C, Paridaens R et al (2014) Multivariable regression analysis of febrile neutropenia occurrence in early breast cancer patients receiving chemotherapy assessing patient-related, chemotherapy-related and genetic risk factors. BMC Cancer, 201(14).
  20. 20.
    Henningsson A, Marsh S, Loos WJ et al (2005) Association of CYP2C8, CYP3A4, CYP3A5, and ABCB1 polymorphisms with the pharmacokinetics of paclitaxel. Clin Cancer Res 11(22):8097–8104. Scholar
  21. 21.
    Rodriguez-Antona C, Niemi M, Backman JT, Kajosaari LI, Neuvonen PJ, Robledo M, Ingelman-Sundberg M (2008) Characterization of novel CYP2C8 haplotypes and their contribution to paclitaxel and repaglinide metabolism. Pharmacogenomics J 8(4):268–277. Scholar
  22. 22.
    Nakajima M, Fujiki Y, Kyo S et al (2005) Pharmacokinetics of paclitaxel in ovarian cancer patients and genetic polymorphisms of CYP2C8, CYP3A4, and MDR1. J Clin Pharmacol 45(6):674–682. Scholar
  23. 23.
    Gréen H, Söderkvist P, Rosenberg P, Mirghani RA, Rymark P, Lundqvist EA, Peterson C (2008) Pharmacogenetic studies of paclitaxel in the treatment of ovarian cancer. Basic Clin Pharmacol 104:130–137. Scholar
  24. 24.
    Marsh S, Paul J, King CR, Gifford G, McLeod HL, Brown R (2007) Pharmacogenetic assessment of toxicity and outcome after platinum plus taxane chemotherapy in ovarian cancer: the Scottish randomised trial in ovarian cancer. 25(29), 4528–4535.

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Clinical Pharmaceutics, School of Pharmaceutical SciencesUniversity of ShizuokaShizuokaJapan
  2. 2.Department of PharmacyToyohashi Municipal HospitalToyohashiJapan
  3. 3.Department of Gynecology and ObstetricsToyohashi Municipal HospitalToyohashiJapan

Personalised recommendations