Skip to main content

Advertisement

Log in

DPYD*2A and MTHFR C677T predict toxicity and efficacy, respectively, in patients on chemotherapy with 5-fluorouracil for colorectal cancer

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Background

Significant inter-individual variation in the sensitivity to 5-fluorouracil (5-FU) represents a major therapeutic hindrance either by impairing drug response or inducing adverse drug reactions (ADRs). This study aimed at exploring the cause behind this inter-individual alterations in consequences of 5-fluorouracil-based chemotherapy by investigating the effects of DPYD*2A and MTHFR C677T polymorphisms on toxicity and response of 5-FU in Bangladeshi colorectal cancer patients.

Methods

Colorectal cancer patients (n = 161) receiving 5-FU-based chemotherapy were prospectively enrolled. DPYD and MTHFR polymorphisms were assessed in peripheral leukocytes. Multivariate analyses were applied to evaluate which variables could predict chemotherapy-induced toxicity and efficacy.

Results

Multivariate analyses showed that DPYD*2A polymorphism was a predictive factor (P = 0.023) for grade 3 and grade 4 5-fluorouracil-related toxicities. Although MTHFR C677T polymorphism might act as forecasters for grade 3 or grade 4 neutropenia, diarrhea, and mucositis, this polymorphism was found to increase significantly (P = 0.006) the response of 5-FU.

Conclusion

DPYD*2A and MTHFR C677T polymorphisms could explain 5-FU toxicity or clinical outcome in Bangladeshi colorectal patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ferlay J, Ferlay J, Soerjomataram I et al. (2013) GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11 [Internet]. Lyon, France: International Agency for Research on Cancer. http://globocan.iarc.fr. Accessed on 10 Apr 2015

  2. Heidelberger C, Chaudhuri NK, Danneberg P et al (1957) Fluorinated pyrimidines, a new class of tumour-inhibitory compounds. Nature 179(4561):663–666

    Article  CAS  PubMed  Google Scholar 

  3. Giacchetti S, Perpoint B, Zidani R et al (2000) Phase III multicenter randomized trial of oxaliplatin added to chronomodulated fluorouracil–leucovorin as first-line treatment of metastatic colorectal cancer. J Clin Oncol 18(1):136–147

    Article  CAS  PubMed  Google Scholar 

  4. DeGramont A, Figer A, Seymour M et al (2000) Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer. J Clin Oncol 18(16):2938–2947

    Article  CAS  Google Scholar 

  5. Hurwitz H, Fehrenbacher L, Novotny W et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350(23):2335–2342

    Article  CAS  PubMed  Google Scholar 

  6. Ezzeldin H, Diasio R (2004) Dihydropyrimidine dehydrogenase deficiency, a pharmacogenetic syndrome associated with potentially life-threatening toxicity following 5-fluorouracil administration. Clin Colorectal Cancer 4(3):181–189

    Article  CAS  PubMed  Google Scholar 

  7. Colucci G, Gebbia V, Paoletti G et al (2005) Phase III randomized trial of FOLFIRI versus FOLFOX4 in the treatment of advanced colorectal cancer: a multicenter study of the Gruppo Oncologico Dell’ Italia Meridionale. J Clin Oncol 23(22):4866–4875

    Article  CAS  PubMed  Google Scholar 

  8. Chung KY, Saltz LB (2007) Adjuvant therapy of colon cancer: current status and future directions. Cancer J 13(3):192–197

    Article  CAS  PubMed  Google Scholar 

  9. Board RE, Valle JW (2007) Metastatic colorectal cancer: current systemic treatment options. Drugs 67(13):1851–1867

    Article  CAS  PubMed  Google Scholar 

  10. Sauer R, Liersch T, Merkel S et al (2012) Preoperative versus postoperative chemoradiotherapy for locally advanced rectal cancer: results of the German CAO/ARO/AIO-94 randomized phase III trial after a median follow-up of 11 years. J Clin Oncol 30(16):1926–1933

    Article  CAS  PubMed  Google Scholar 

  11. Asmis T, Berry S, Cosby R et al (2014) Cancer Care Ontario’s Gastrointestinal Disease Site Group. Strategies of sequential therapies in unresectable metastatic colorectal cancer: a meta-analysis. Curr Oncol 21(6):318–328

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chua W, Kho PS, Moore MM et al (2011) Clinical, laboratory and molecular factors predicting chemotherapy efficacy and toxicity in colorectal cancer. Crit Rev Oncol Hematol 79(3):224–250

    Article  PubMed  Google Scholar 

  13. Hofheinz RD, Wenz F, Post S at al (2012) Chemoradiotherapy with capecitabine versus fluorouracil for locally advanced rectal cancer: a randomised, multicentre, non-inferiority, phase 3 trial. Lancet Oncol 13(6):579–588

    Article  CAS  PubMed  Google Scholar 

  14. Li W, Xu J, Shen L, Liu T et al (2014) Phase II study of weekly irinotecan and capecitabine treatment in metastatic colorectal cancer patients. BMC Cancer 14:986

    Article  PubMed  PubMed Central  Google Scholar 

  15. Meta-Analysis Group In Cancer, Lévy E, Piedbois P, Buyse M et al (1998) Toxicity of fluorouracil in patients with advanced colorectal cancer: effect of administration schedule and prognostic factors. J Clin Oncol 16 (11):3537–3541

  16. Diasio RB, Harris BE (1989) Clinical pharmacology of 5-fluorouracil. Clin Pharmacokinet 16(4):215–237

    Article  CAS  PubMed  Google Scholar 

  17. Mattison LK, Soong R, Diasio RB (2002) Implications of dihydropyrimidine dehydrogenase on 5-fluorouracil pharmacogenetics and pharmacogenomics. Pharmacogenomics 3(4):485–492

    Article  CAS  PubMed  Google Scholar 

  18. Thorn CF, Marsh S, Carrillo MW et al (2011) PharmGKB summary: fluoropyrimidine pathways. Pharmacogenet Genomics 21(4):237–242

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Van Kuilenburg AB, Meinsma R, Zonnenberg BA et al (2003) Dihydropyrimidinase deficiency and severe 5-fluorouracil toxicity. Clin Cancer Res 9(12):4363–4367

    PubMed  Google Scholar 

  20. Van Kuilenburg AB, Maring JG, Schalhorn A et al. (2008) Pharmacokinetics of 5-fluorouracil in patients heterozygous for the IVS14 + 1G > A mutation in the dihydropyrimidine dehydrogenase gene. Nucl Nucl Nucl Acids 27(6):692–698

  21. Amstutz U, Froehlich TK, Largiadèr CR (2011) Dihydropyrimidine dehydrogenase gene as a major predictor of severe 5-fluorouracil toxicity. Pharmacogenomics 12(9):1321–1336

    Article  CAS  PubMed  Google Scholar 

  22. Kaldate RR, Haregewoin A, Grier CE et al (2012) Modeling the 5-fluorouracil area under the curve versus dose relationship to develop a pharmacokinetic dosing algorithm for colorectal cancer patients receiving FOLFOX6. Oncologist 17(3):296–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Etienne MC, Lagrange JL, Dassonville O et al (1994) Population study of dihydropyrimidine dehydrogenase in cancer patients. J Clin Oncol 12(11):2248–2253

    Article  CAS  PubMed  Google Scholar 

  24. Cohen V, Panet-Raymond V, Sabbaghian N, Morin I et al (2003) Methylenetetrahydrofolatereductase polymorphism in advanced colorectal cancer: a novel genomic predictor of clinical response to fluoropyrimidine-based chemotherapy. Clin Cancer Res 9(5):1611–1615

    CAS  PubMed  Google Scholar 

  25. Sohn KJ, Croxford R, Yates Z et al (2004) Effect of the methylenetetrahydrofolatereductase C677T polymorphism on chemosensitivity of colon and breast cancer cells to 5-fluorouracil and methotrexate. J Natl Cancer Inst 96:134–144

    Article  CAS  PubMed  Google Scholar 

  26. Toffoli G, De Mattia E (2008) Pharmacogenetic relevance of MTHFR polymorphisms. Pharmacogenomics 9(9):1195–1206

    Article  CAS  PubMed  Google Scholar 

  27. Kantar M, Kosova B, Cetingul N et al (2009) Methylenetetrahydrofolatereductase C677T and A1298C gene polymorphisms and therapy-related toxicity in children treated for acute lymphoblastic leukemia and non-Hodgkin lymphoma. Leuk Lymphoma 50(6):912–917

    Article  CAS  PubMed  Google Scholar 

  28. World Medical Association Declaration of Helsinki (2008) Ethical principles for medical research involving human subjects. Adopted by the 18th WMA General Assembly, Helsinki, Finland, June 1964, and amended by the 59th WMA General Assembly Seoul, South Korea

  29. National Cancer Institute Common Terminology Criteria for Adverse Events, Version 3.0. http://ctep.cancer.gov/protocolDevelopment/electronic_applications/docs/ctcaev3.pdf

  30. Response Evaluation Criteria in Solid Tumors (RECST) https://www.eortc.be/Recist/documents/ RECISTGuidelines.pdf

  31. Islam MS, Ahmed MU, Sayeed MS et al (2013) Lung cancer risk in relation to nicotinic acetylcholine receptor, CYP2A6 and CYP1A1 genotypes in the Bangladeshi population. Clin Chim Acta 416:11–19

    Article  CAS  PubMed  Google Scholar 

  32. Ma Q, Lu AY (2011) Pharmacogenetics, pharmacogenomics, and individualized medicine. Pharmacol Rev 63(2):437–459

    Article  CAS  PubMed  Google Scholar 

  33. Stewart CF, Schuetz EG (2000) Need and potential for predictive tests of hepatic metabolism of anticancer drugs. Clin Cancer Res 6(9):3391–3392

    CAS  PubMed  Google Scholar 

  34. Chua W, Goldstein D, Lee CK et al (2009) Molecular markers of response and toxicity to FOLFOX chemotherapy in metastatic colorectal cancer. Br J Cancer 101(6):998–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huang RS, Ratain MJ (2009) Pharmacogenetics and pharmacogenomics of anticancer agents. CA Cancer J Clin 59(1):42–55

    Article  PubMed  PubMed Central  Google Scholar 

  36. Van Kuilenburg AB, Vreken P, Beex LV et al (1997) Heterozygosity for a point mutation in an invariant splice donor site of dihydropyrimidine dehydrogenase and severe 5-fluorouracil related toxicity. Eur J Cancer 33(13):2258–2264

    Article  PubMed  Google Scholar 

  37. Vreken P, Vankuilenburg ABP, Meinsma R et al (1996) A point mutation in an invariant splice donor site leads to exon skipping in two unrelated Dutch patients with dihydropyrimidine dehydrogenase deficiency. J Inherit Metab Dis 19(5):645–654

    Article  CAS  PubMed  Google Scholar 

  38. Wei X, McLeod HL, McMurrough J et al (1996) Molecular basis of the human dihydropyrimidine dehydrogenase deficiency and 5-fluorouracil toxicity. J Clin Invest 98:610–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ciccolini J, Mercier C, Evrard A et al (2006) A rapid and inexpensive method for anticipating severe toxicity to fluorouracil and fluorouracil-based chemotherapy. Ther Drug Monit 8(5):678–685

    Article  Google Scholar 

  40. Van Kuilenburg AB, Haasjes J, Meinsma R et al (2000) Dihydropyrimidine dehydrogenase (DPD) deficiency: novel mutations in the DPD gene. Adv Exp Med Biol 486:247–250

    Article  PubMed  Google Scholar 

  41. Boisdron-Celle M, Remaud G, Traore S et al (2007) 5-fluorouracil-related severe toxicity: a comparison of different methods for the pretherapeutic detection of dihydropyrimidine dehydrogenase deficiency. Cancer Lett 249(2):271–282

    Article  CAS  PubMed  Google Scholar 

  42. Terrazzino S, Cargnin S, Del Re M et al (2013) DPYD IVS14 + 1G > A and 2846A > T genotyping for the prediction of severe fluoropyrimidine-related toxicity: a meta-analysis. Pharmacogenomics 14(11):1255–1272

    Article  CAS  PubMed  Google Scholar 

  43. Van Kuilenburg AB, Haasjes J, Van Lenthe H et al (2000) Dihydropyrimidine dehydrogenase deficiency and 5-fluorouracil associated toxicity. Adv Exp Med Biol 486:251–255

    Article  PubMed  Google Scholar 

  44. Van Kuilenburg AB, Dobritzsch D, Meinsma R et al (2002) Novel disease-causing mutations in the dihydropyrimidine dehydrogenase gene interpreted by analysis of the three dimensional protein structures. Biochem J 364(Pt 1):157–163

    Article  PubMed  PubMed Central  Google Scholar 

  45. Schwab M, Zanger UM, Marx C et al (2008) Role of genetic and nongenetic factors for fluorouracil treatment-related severe toxicity: a prospective clinical trial by the German 5-FU Toxicity Study Group. J Clin Oncol 26(13):2131–2138

    Article  CAS  PubMed  Google Scholar 

  46. Gross E, Busse B, Riemenschneider M et al. (2008) Strong association of a common dihydropyrimidine dehydrogenase gene polymorphism with fluoropyrimidine-related toxicity in cancer patients. PLoS One 3 (12), e4003

  47. Cho H, Park Y, Kang W, Kim J, Lee S (2007) Thymidylate synthase (TYMS) and dihydropyrimidine dehydrogenase (DPYD) polymorphisms in the Korean population for prediction of 5-fluorouracil-associated toxicity. Ther Drug Monit 29(2):190–196

    Article  CAS  PubMed  Google Scholar 

  48. Maekawa K, Saeki M, Saito Y et al (2007) Genetic variations and haplotype structures of the DPYD gene encoding dihydropyrimidine dehydrogenase in Japanese and their ethnic differences. J Hum Genet 52(10):804–819

    Article  CAS  PubMed  Google Scholar 

  49. Morel A, Boisdron-Celle M, Fey L et al (2006) Clinical relevance of different dihydropyrimidine dehydrogenase gene single nucleotide polymorphisms on 5-fluorouracil tolerance. Mol Cancer Ther 5(11):2895–2904

    Article  CAS  PubMed  Google Scholar 

  50. Frosst P, Blom HJ, Milos R et al (1995) A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolatereductase. Nat Genet 10:111–113

    Article  CAS  PubMed  Google Scholar 

  51. Yeh CC, Lai CY, Chang SN et al (2017) Polymorphisms of MTHFR C677T and A1298C associated with survival in patients with colorectal cancer treated with 5-fluorouracil-based chemotherapy. Int J Clin Oncol 2:1–10

    Google Scholar 

  52. Etienne MC, Formento JL, Chazal M et al (2004) Methylenetetrahydrofolate reductase gene polymorphisms and response to fluorouracil-based treatment in advanced colorectal cancer patients. Pharmacogenet Genom 14(12):785–792

    Article  CAS  Google Scholar 

  53. Etienne MC, Ilc K, Formento JL et al (2004) Thymidylate synthase and methylenetetrahydrofolatereductase gene polymorphisms: relationships with 5-fluorouracil sensitivity. Br J Cancer 90:526–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jakobsen A, Nielsen JN, Gyldenkerne N, Lindeberg J (2005) Thymidylate synthase and methylenetetrahydrofolatereductase gene polymorphism in normal tissue as predictors of fluorouracil sensitivity. J Clin Oncol 23:1365–1369

    Article  CAS  PubMed  Google Scholar 

  55. Etienne-Grimaldi MC, Milano G, Maindrault-Goebel F et al (2010) Methylenetetrahydrofolatereductase (MTHFR) gene polymorphisms and FOLFOX response in colorectal cancer patients. Br J Clin Pharmacol 69(1):58–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Marcuello E, Altés A, Menoyo A et al (2006) Methylenetetrahydrofolatereductase gene polymorphisms: genomic predictors of clinical response to fluoropyrimidine-based chemotherapy? Cancer Chemother Pharmacol 57:835–840

    Article  CAS  PubMed  Google Scholar 

  57. Sharma R, Hoskins JM, Rivory LP et al (2008) Thymidylate synthase and methylenetetrahydrofolatereductase gene polymorphisms and toxicity to capecitabine in advanced colorectal cancer patients. Clin Cancer Res 14:817–825

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are very grateful to all the patients, controls, physicians, and nurses. We are also grateful to the Department of Clinical Pharmacy and Pharmacology for the partial support to conduct this research project. The authors have no other relevant affiliations or financial involvement with any organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Safiqul Islam.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical approval

All procedures performed in this study involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nahid, N.A., Apu, M.N.H., Islam, M.R. et al. DPYD*2A and MTHFR C677T predict toxicity and efficacy, respectively, in patients on chemotherapy with 5-fluorouracil for colorectal cancer. Cancer Chemother Pharmacol 81, 119–129 (2018). https://doi.org/10.1007/s00280-017-3478-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-017-3478-3

Keywords

Navigation