Skip to main content

Advertisement

Log in

Metabolomic prediction of treatment outcome in pancreatic ductal adenocarcinoma patients receiving gemcitabine

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Resistance to gemcitabine remains a key challenge in the treatment of pancreatic ductal adenocarcinoma (PDAC), necessitating the constant search for effective strategies for a priori prediction of clinical outcome. While the existing studies focused on aberration of drug disposition genes and proteins as molecular predictors of gemcitabine treatment outcomes, the metabolic aberration associated with chemoresistance in clinical PDAC has been neglected. This exploratory study investigated the potential role of tissue metabolomics in characterizing the clinical treatment outcome of gemcitabine therapy.

Methods

Surgically resected tumors from PDAC patients who underwent gemcitabine-based adjuvant chemotherapy (n = 25) were subjected to metabotyping using gas chromatography/time-of-flight mass spectrometry (GC/TOFMS).

Results

A partial least-squares discriminant analysis (PLS-DA) model clearly distinguished patients who had favorable survival [overall survival (OS) > 24 months] from those who exhibited poorer survival (OS < 16 months) (Q 2 = 0.302). Receiver-operating characteristic analysis demonstrated the robustness of the PLS-DA model with an area under the curve of 1. PLS-DA revealed 19 marker metabolites (e.g., lactic acid, proline, and pyroglutamate) that shed insights into the chemoresistance of gemcitabine in PDAC. Particularly, tissue levels of lactic acid complemented transcript expression levels of human equilibrative nucleoside transporter 1 in distinguishing patients according to their overall survival.

Conclusion

This work established proof-of-principle for GC/TOFMS-based global metabotyping of PDAC and laid the foundation for future discovery of metabolic biomarkers predictive of gemcitabine resistance in PDAC chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ferlay J SI, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2013) GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11. Lyon, France: International Agency for Research on Cancer. http://globocan.iarc.fr. Accessed 11 Aug 2014

  2. Burris HA 3rd, Moore MJ, Andersen J, Green MR, Rothenberg ML, Modiano MR, Cripps MC, Portenoy RK, Storniolo AM, Tarassoff P, Nelson R, Dorr FA, Stephens CD, Von Hoff DD (1997) Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol 15(6):2403–2413

    Article  CAS  PubMed  Google Scholar 

  3. Voutsadakis IA (2011) Molecular predictors of gemcitabine response in pancreatic cancer. World J Gastrointest Oncol 3(11):153–164. https://doi.org/10.4251/wjgo.v3.i11.153

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ryan DP G-CR, Chabner BA (2006) Cytidine analogues. In: Cancer chemotherapy and biotherapy, 4th edn. Lippincott Williams and Wilkins, Philadelphia, pp 183–211

    Google Scholar 

  5. Farrell JJ, Elsaleh H, Garcia M, Lai R, Ammar A, Regine WF, Abrams R, Benson AB, Macdonald J, Cass CE, Dicker AP, Mackey JR (2009) Human equilibrative nucleoside transporter 1 levels predict response to gemcitabine in patients with pancreatic cancer. Gastroenterology 136(1):187–195. https://doi.org/10.1053/j.gastro.2008.09.067

    Article  PubMed  Google Scholar 

  6. Greenhalf W, Ghaneh P, Neoptolemos JP, Palmer DH, Cox TF, Lamb RF, Garner E, Campbell F, Mackey JR, Costello E, Moore MJ, Valle JW, McDonald AC, Carter R, Tebbutt NC, Goldstein D, Shannon J, Dervenis C, Glimelius B, Deakin M, Charnley RM, Lacaine F, Scarfe AG, Middleton MR, Anthoney A, Halloran CM, Mayerle J, Olah A, Jackson R, Rawcliffe CL, Scarpa A, Bassi C, Buchler MW, European Study Group for Pancreatic C (2014) Pancreatic cancer hENT1 expression and survival from gemcitabine in patients from the ESPAC-3 trial. J Natl Cancer Inst 106 (1):djt347. https://doi.org/10.1093/jnci/djt347

    Article  PubMed  Google Scholar 

  7. Marechal R, Bachet JB, Mackey JR, Dalban C, Demetter P, Graham K, Couvelard A, Svrcek M, Bardier-Dupas A, Hammel P, Sauvanet A, Louvet C, Paye F, Rougier P, Penna C, Andre T, Dumontet C, Cass CE, Jordheim LP, Matera EL, Closset J, Salmon I, Deviere J, Emile JF, Van Laethem JL (2012) Levels of gemcitabine transport and metabolism proteins predict survival times of patients treated with gemcitabine for pancreatic adenocarcinoma. Gastroenterology 143(3):664–674 e661–666. https://doi.org/10.1053/j.gastro.2012.06.006

    Article  CAS  PubMed  Google Scholar 

  8. Zhu Y, Qi M, Lao L, Wang W, Hua L, Bai G (2014) Human equilibrative nucleoside transporter 1 predicts survival in patients with pancreatic cancer treated with gemcitabine: a meta-analysis. Genet Test Mol Biomark 18(5):306–312. https://doi.org/10.1089/gtmb.2013.0419

    Article  CAS  Google Scholar 

  9. Sebastiani V, Ricci F, Rubio-Viqueira B, Kulesza P, Yeo CJ, Hidalgo M, Klein A, Laheru D, Iacobuzio-Donahue CA (2006) Immunohistochemical and genetic evaluation of deoxycytidine kinase in pancreatic cancer: relationship to molecular mechanisms of gemcitabine resistance and survival. Clin Cancer Res 12(8):2492–2497. https://doi.org/10.1158/1078-0432.CCR-05-2655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Costantino CL, Witkiewicz AK, Kuwano Y, Cozzitorto JA, Kennedy EP, Dasgupta A, Keen JC, Yeo CJ, Gorospe M, Brody JR (2009) The role of HuR in gemcitabine efficacy in pancreatic cancer: HuR Up-regulates the expression of the gemcitabine metabolizing enzyme deoxycytidine kinase. Cancer Res 69(11):4567–4572. https://doi.org/10.1158/0008-5472.CAN-09-0371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Itoi T, Sofuni A, Fukushima N, Itokawa F, Tsuchiya T, Kurihara T, Moriyasu F, Tsuchida A, Kasuya K (2007) Ribonucleotide reductase subunit M2 mRNA expression in pretreatment biopsies obtained from unresectable pancreatic carcinomas. J Gastroenterol 42(5):389–394. https://doi.org/10.1007/s00535-007-2017-0

    Article  CAS  PubMed  Google Scholar 

  12. Nordh S, Ansari D, Andersson R (2014) hENT1 expression is predictive of gemcitabine outcome in pancreatic cancer: a systematic review. World J Gastroenterol 20(26):8482–8490. https://doi.org/10.3748/wjg.v20.i26.8482

    Article  PubMed  PubMed Central  Google Scholar 

  13. Nicholson JK, Wilson ID, Lindon JC (2011) Pharmacometabonomics as an effector for personalized medicine. Pharmacogenomics 12(1):103–111. https://doi.org/10.2217/pgs.10.157

    Article  CAS  PubMed  Google Scholar 

  14. Nicholson JK, Lindon JC, Holmes E (1999) ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29(11):1181–1189. https://doi.org/10.1080/004982599238047

    Article  CAS  PubMed  Google Scholar 

  15. Hou Y, Yin M, Sun F, Zhang T, Zhou X, Li H, Zheng J, Chen X, Li C, Ning X, Lou G, Li K (2014) A metabolomics approach for predicting the response to neoadjuvant chemotherapy in cervical cancer patients. Mol Biosyst 10(8):2126–2133. https://doi.org/10.1039/c4mb00054d

    Article  CAS  PubMed  Google Scholar 

  16. Choi JS, Baek HM, Kim S, Kim MJ, Youk JH, Moon HJ, Kim EK, Nam YK (2013) Magnetic resonance metabolic profiling of breast cancer tissue obtained with core needle biopsy for predicting pathologic response to neoadjuvant chemotherapy. PLoS One 8(12):e83866. https://doi.org/10.1371/journal.pone.0083866

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wei S, Liu L, Zhang J, Bowers J, Gowda GA, Seeger H, Fehm T, Neubauer HJ, Vogel U, Clare SE, Raftery D (2013) Metabolomics approach for predicting response to neoadjuvant chemotherapy for breast cancer. Mol Oncol 7(3):297–307. https://doi.org/10.1016/j.molonc.2012.10.003

    Article  CAS  PubMed  Google Scholar 

  18. Phua LC, Mal M, Koh PK, Cheah PY, Chan EC, Ho HK (2013) Investigating the role of nucleoside transporters in the resistance of colorectal cancer to 5-fluorouracil therapy. Cancer Chemother Pharmacol 71(3):817–823. https://doi.org/10.1007/s00280-012-2054-0

    Article  CAS  PubMed  Google Scholar 

  19. Fujimura Y, Ikenaga N, Ohuchida K, Setoyama D, Irie M, Miura D, Wariishi H, Murata M, Mizumoto K, Hashizume M, Tanaka M (2014) Mass spectrometry-based metabolic profiling of gemcitabine-sensitive and gemcitabine-resistant pancreatic cancer cells. Pancreas 43(2):311–318. https://doi.org/10.1097/MPA.0000000000000092

    Article  CAS  PubMed  Google Scholar 

  20. Oettle H, Neuhaus P, Hochhaus A, Hartmann JT, Gellert K, Ridwelski K, Niedergethmann M, Zulke C, Fahlke J, Arning MB, Sinn M, Hinke A, Riess H (2013) Adjuvant chemotherapy with gemcitabine and long-term outcomes among patients with resected pancreatic cancer: the CONKO-001 randomized trial. JAMA 310(14):1473–1481. https://doi.org/10.1001/jama.2013.279201

    Article  CAS  PubMed  Google Scholar 

  21. Mal M, Koh PK, Cheah PY, Chan EC (2009) Development and validation of a gas chromatography/mass spectrometry method for the metabolic profiling of human colon tissue. Rapid Commun Mass Spectrom 23(4):487–494. https://doi.org/10.1002/rcm.3898

    Article  CAS  PubMed  Google Scholar 

  22. Vandendool H, Kratz PD (1963) A generalization of the retention index system including linear temperature programmed gas–liquid partition chromatography. J Chromatogr 11:463–471

    Article  CAS  PubMed  Google Scholar 

  23. Farrés M, Platikanov S, Tsakovski S, Tauler R (2015) Comparison of the variable importance in projection (VIP) and of the selectivity ratio (SR) methods for variable selection and interpretation. J Chemometr 29(10):528–536

    Article  Google Scholar 

  24. Lindon JC, Nicholson JK (2014) The emergent role of metabolic phenotyping in dynamic patient stratification. Expert Opin Drug Metab Toxicol 10(7):915–919. https://doi.org/10.1517/17425255.2014.922954

    Article  CAS  PubMed  Google Scholar 

  25. Lu J, Tan M, Cai Q (2015) The Warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism. Cancer Lett 356(2 Pt A):156–164. https://doi.org/10.1016/j.canlet.2014.04.001

    Article  CAS  PubMed  Google Scholar 

  26. Warburg O (1956) On the origin of cancer cells. Science 123(3191):309–314

    Article  CAS  PubMed  Google Scholar 

  27. Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4(11):891–899. https://doi.org/10.1038/nrc1478

    Article  CAS  PubMed  Google Scholar 

  28. Hirschhaeuser F, Sattler UG, Mueller-Klieser W (2011) Lactate: a metabolic key player in cancer. Cancer Res 71(22):6921–6925. https://doi.org/10.1158/0008-5472.CAN-11-1457

    Article  CAS  PubMed  Google Scholar 

  29. Bhattacharya B, Mohd Omar MF, Soong R (2016) The Warburg effect and drug resistance. Br J Pharmacol 173(6):970–979. https://doi.org/10.1111/bph.13422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gesto DS, Cerqueira NM, Fernandes PA, Ramos MJ (2012) Gemcitabine: a critical nucleoside for cancer therapy. Curr Med Chem 19(7):1076–1087

    Article  CAS  PubMed  Google Scholar 

  31. Wike-Hooley JL, Haveman J, Reinhold HS (1984) The relevance of tumour pH to the treatment of malignant disease. Radiother Oncol 2(4):343–366

    Article  CAS  PubMed  Google Scholar 

  32. Raghunand N, Gillies RJ (2000) pH and drug resistance in tumors. Drug Resist Updates Rev Comment Antimicrob Anticancer Chemother 3(1):39–47. https://doi.org/10.1054/drup.2000.0119

    CAS  Google Scholar 

  33. Mackey JR, Mani RS, Selner M, Mowles D, Young JD, Belt JA, Crawford CR, Cass CE (1998) Functional nucleoside transporters are required for gemcitabine influx and manifestation of toxicity in cancer cell lines. Cancer Res 58(19):4349–4357

    CAS  PubMed  Google Scholar 

  34. Kumar A, Bachhawat AK (2012) Pyroglutamic acid: throwing light on a lightly studied metabolite. Curr Sci 102(2):288

    CAS  Google Scholar 

  35. DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, Thompson CB (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA 104(49):19345–19350. https://doi.org/10.1073/pnas.0709747104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wise DR, Thompson CB (2010) Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci 35(8):427–433. https://doi.org/10.1016/j.tibs.2010.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Son J, Lyssiotis CA, Ying H, Wang X, Hua S, Ligorio M, Perera RM, Ferrone CR, Mullarky E, Shyh-Chang N, Kang Y, Fleming JB, Bardeesy N, Asara JM, Haigis MC, DePinho RA, Cantley LC, Kimmelman AC (2013) Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496(7443):101–105. https://doi.org/10.1038/nature12040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wu MC, Arimura GK, Yunis AA (1978) Mechanism of sensitivity of cultured pancreatic carcinoma to asparaginase. Int J Cancer 22(6):728–733

    Article  CAS  PubMed  Google Scholar 

  39. Yang L, Moss TJ, Marini JC, Mangala S, Wahlig S, Win J, Su D, Sood AK, Ram PT, Nagrath D (2014) Glutamine mediated aggressiveness and drug sensitivity in ovarian cancer cells. Cancer Res 74(19 Supplement):3377–3377

    Article  Google Scholar 

  40. Yuneva MO, Fan TW, Allen TD, Higashi RM, Ferraris DV, Tsukamoto T, Mates JM, Alonso FJ, Wang C, Seo Y, Chen X, Bishop JM (2012) The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab 15(2):157–170. https://doi.org/10.1016/j.cmet.2011.12.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Carracedo A, Cantley LC, Pandolfi PP (2013) Cancer metabolism: fatty acid oxidation in the limelight. Nat Rev Cancer 13(4):227–232. https://doi.org/10.1038/nrc3483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Marechal R, Mackey JR, Lai R, Demetter P, Peeters M, Polus M, Cass CE, Young J, Salmon I, Deviere J, Van Laethem JL (2009) Human equilibrative nucleoside transporter 1 and human concentrative nucleoside transporter 3 predict survival after adjuvant gemcitabine therapy in resected pancreatic adenocarcinoma. Clin Cancer Res 15(8):2913–2919. https://doi.org/10.1158/1078-0432.CCR-08-2080

    Article  CAS  PubMed  Google Scholar 

  43. Giovannetti E, Del Tacca M, Mey V, Funel N, Nannizzi S, Ricci S, Orlandini C, Boggi U, Campani D, Del Chiaro M, Iannopollo M, Bevilacqua G, Mosca F, Danesi R (2006) Transcription analysis of human equilibrative nucleoside transporter-1 predicts survival in pancreas cancer patients treated with gemcitabine. Cancer Res 66(7):3928–3935. https://doi.org/10.1158/0008-5472.CAN-05-4203

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Singapore General Hospital Research Grant (SRG#09/2015) provided to LCP and the Singapore Ministry of Education Tier 1 Grant (R-148-000-204-112) provided to ECYC. The authors would like to thank Dr. Chng Kern Rei for providing statistical support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lee Cheng Phua, Tony Kiat Hon Lim or Eric Chun Yong Chan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 658 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phua, L.C., Goh, S., Tai, D.W.M. et al. Metabolomic prediction of treatment outcome in pancreatic ductal adenocarcinoma patients receiving gemcitabine. Cancer Chemother Pharmacol 81, 277–289 (2018). https://doi.org/10.1007/s00280-017-3475-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-017-3475-6

Keywords

Navigation