Advertisement

Cancer Chemotherapy and Pharmacology

, Volume 80, Issue 5, pp 985–998 | Cite as

Participation of MT3 melatonin receptors in the synergistic effect of melatonin on cytotoxic and apoptotic actions evoked by chemotherapeutics

  • Roberto Pariente
  • Ignacio Bejarano
  • Javier Espino
  • Ana B. Rodríguez
  • José A. Pariente
Original Article

Abstract

Background

Melatonin has antitumor activity via several mechanisms including its antiproliferative and proapoptotic effects in addition to its potent antioxidant actions. Therefore, melatonin may be useful in the treatment of tumors in association with chemotherapy drugs.

Purpose and methods

This study was performed to study the role of melatonin receptors on the cytotoxicity and apoptosis induced by the chemotherapeutic agents cisplatin and 5-fluorouracil in two tumor cell lines, such as human colorectal cancer HT-29 cells and cervical cancer HeLa cells.

Results

We found that both melatonin and the two chemotherapeutic agents tested induced a decrease in HT-29 and HeLa cell viability. Furthermore, melatonin significantly increased the cytotoxic effect of chemotherapeutic agents, particularly, in 5-fluorouracil-challenged cells. Stimulation of cells with either of the two chemotherapeutic agents in the presence of melatonin further increased caspase-3 activation. Concomitant treatments with melatonin and chemotherapeutic agents augmented the population of apoptotic cells compared to the treatments with chemotherapeutics alone. Blockade of MT1 and/or MT2 receptors with luzindole or 4-P-PDOT was unable to reverse the enhancing effects of melatonin on both cytotoxicity, caspase-3 activation and the amount of apoptotic cells evoked by the chemotherapeutic agents, whereas when MT3 receptors were blocked with prazosin, the synergistic effect of melatonin with chemotherapy on cytotoxicity and apoptosis was reversed.

Conclusion

Our findings provided evidence that in vitro melatonin strongly enhances chemotherapeutic-induced cytotoxicity and apoptosis in two tumor cell lines, namely HT-29 and HeLa cells and, this potentiating effect of melatonin is mediated by MT3 receptor stimulation.

Keywords

Melatonin Colorectal and cervical cancer Chemotherapy Cytotoxicity Apoptosis 

Notes

Acknowledgements

The authors appreciate the technical and human support provided by the facility of Bioscience Applied Techniques of SAIUEx (financed by UEx, Junta de Extremadura, MICINN, FEDER, and FSE).

Conflict of interest

R. Pariente declares that he has no conflict of interest. I. Bejarano declares that he has no conflict of interest. J. Espino declares that he has no conflict of interest. A.B. Rodriguez declares that she has no conflict of interest. J.A. Pariente declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Funding

This work was supported by Gobierno de Extremadura grants (GR15051). J. Espino holds a research post-doctoral fellowship from Gobierno de Extremadura (jointly financed by the European Regional Development Fund (ERDF); ref. PO14011).

References

  1. 1.
    Okazawa M, Mabuchi S, Isohashi F et al (2013) Impact of the addition of concurrent chemotherapy to pelvic radiotherapy in surgically treated stage IB1-IIB cervical cancer patients with intermediate-risk or high-risk factors: a 13-year experience. Int J Gynecol Cancer 23:567–575CrossRefPubMedGoogle Scholar
  2. 2.
    Reiter RJ, Tan DX, Rosales-Corral SA, Manchester LC (2013) The universal nature, unequal distribution and antioxidant functions of melatonin and its derivatives. Mini Rev Med Chem 13:373–384PubMedGoogle Scholar
  3. 3.
    Reiter RJ, Tan DX, Tamura H, Cruz MH, Fuentes-Broto L (2014) Clinical relevance of melatonin in ovarian and placental physiology. Gynecol Endocrinol 30:83–89CrossRefPubMedGoogle Scholar
  4. 4.
    Hardeland R, Cardinali DP, Srinivasan V, Spence DW, Brown GM, Pandi-Perumal SR (2011) Melatonin—a pleiotropic, orchestrating regulator molecule. Prog Neurobiol 93:350–384CrossRefPubMedGoogle Scholar
  5. 5.
    Meng X, Li Y, Li S et al (2017) Dietary sources and bioactivities of melatonin. Nutrients 9:367. doi: 10.3390/nu9040367 CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Arendt J, Skene DJ (2005) Melatonin as a chronobiotic. Sleep Med Rev 9:25–39CrossRefPubMedGoogle Scholar
  7. 7.
    Reiter RJ, Tan DX, Manchester LC, Paredes SD, Mayo JC, Sainz RM (2009) Melatonin and reproduction revisited. Biol Reprod 81:445–456CrossRefPubMedGoogle Scholar
  8. 8.
    Calvo JR, Gonzalez-Yanes C, Maldanado MD (2013) The role of melatonin in the cells of the innate immunity: a review. J Pineal Res 55:103–120CrossRefPubMedGoogle Scholar
  9. 9.
    Bejarano I, Redondo PC, Espino J et al (2009) Melatonin induces mitochondrial-mediated apoptosis in human myeloid HL 60 cells. J Pineal Res 46:392–400CrossRefPubMedGoogle Scholar
  10. 10.
    Espino J, Bejarano I, Redondo PC et al (2010) Melatonin reduces apoptosis induced by calcium signaling in human leukocytes: Evidence for the involvement of mitochondria and Bax activation. J Membr Biol 233:105–118CrossRefPubMedGoogle Scholar
  11. 11.
    Espino J, Ortiz A, Bejarano I et al (2011) Melatonin protects human spermatozoa from apoptosis via melatonin receptor- and extracellular signal-regulated kinase-mediated pathways. Fertil Steril 95:2290–2296CrossRefPubMedGoogle Scholar
  12. 12.
    Zhang JJ, Meng X, Li Y et al (2017) Effects of melatonin on liver injures and diseases. Int J Mol Sci 18:673. doi: 10.3390/ijms18040673 CrossRefPubMedCentralGoogle Scholar
  13. 13.
    Tan DX, Manchester LC, Terron MP, Flores LJ, Tamura H, Reiter RJ (2007) One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? J Pineal Res 42:28–42CrossRefPubMedGoogle Scholar
  14. 14.
    Slominski RM, Reiter RJ, Schlabritz-Loutsevitch N, Ostrom RS, Slominski AT (2012) Melatonin membrane receptors in peripheral tissues: distribution and functions. Mol Cell Endocrinol 351:152–166CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Wiesenberg L, Missbach M, Carlberg C (1998) The potential role of the transcription factor RZR/ROR as a mediator of nuclear melatonin signaling. Restor Neurol Neurosci 12:143–150PubMedGoogle Scholar
  16. 16.
    Reiter RJ, Tan DX, Sainz R, Mayo JC, Lopez-Burillo S (2002) Melatonin: reducing the toxicity and increasing the efficacy of drugs. J Pharm Pharmacol 54:1299–1321CrossRefPubMedGoogle Scholar
  17. 17.
    Uguz AC, Cig B, Espino J et al (2012) Melatonin potentiates chemotherapy-induced cytotoxicity and apoptosis in rat pancreatic tumor cells. J Pineal Res 53:91–98CrossRefPubMedGoogle Scholar
  18. 18.
    Pariente R, Pariente JA, Rodríguez AB, Espino J (2016) Melatonin sensitizes human cervical cancer HeLa cells to cisplatin-induced cytotoxicity and apoptosis: effects on oxidative stress and DNA fragmentation. J Pineal Res 60:55–64CrossRefPubMedGoogle Scholar
  19. 19.
    Lissoni P (2007) Biochemotherapy with standard chemotherapies plus the pineal hormone melatonin in the treatment of advanced solid neoplasms. Pathol Biol 55:201–204CrossRefPubMedGoogle Scholar
  20. 20.
    Xiang S, Dauchy RT, Hauch A et al (2015) Doxorubicin resistance in breast cancer is driven by light at night induced disruption of the circadian melatonin signal. J Pineal Res 59:60–69CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Bejarano I, Espino J, Barriga C, Reiter RJ, Pariente JA, Rodríguez AB (2011) Pro-oxidant effect of melatonin in human leucocytes: relation with its cytotoxic and pro-apoptotic effects. Basic Clin Pharmacol Toxicol 108:14–20CrossRefPubMedGoogle Scholar
  22. 22.
    Espino J, Bejarano I, Paredes SD, Barriga C, Rodríguez AB, Pariente JA (2011) Protective effect of melatonin against human leukocyte apoptosis induced by intracellular calcium overload: relation with its antioxidant actions. J Pineal Res 51:195–206CrossRefPubMedGoogle Scholar
  23. 23.
    Espino J, Rodríguez AB, Pariente JA (2013) The inhibition of TNF-α-induced leucocyte apoptosis by melatonin involves membrane receptor MT1/MT2 interaction. J Pineal Res 54:442–452CrossRefPubMedGoogle Scholar
  24. 24.
    Strasser L, O´Connor VM, Dixit (2000) Apoptosis signaling. Ann Rev Biochem 69:217–245CrossRefPubMedGoogle Scholar
  25. 25.
    Reiter RJ, Tan DX, Fuentes-Broto L (2010) Melatonin: a multitasking molecule. Prog Brain Res 181:127–151CrossRefPubMedGoogle Scholar
  26. 26.
    Sainz RM, Mayo JC, Rodriguez C, Tan DX, Lopez-Burillo S, Reiter RJ (2003) Melatonin and cell death: differential actions on apoptosis in normal and cancer cells. Cell Mol Life Sci 60:1407–1426CrossRefPubMedGoogle Scholar
  27. 27.
    Trubiani O, Recchuoni R, Moroni F et al (2005) Melatonin provokes cell death in human B-lymphoma cells by mitochondrial-dependent apoptotic pathways activation. J Pineal Res 39:425–431CrossRefPubMedGoogle Scholar
  28. 28.
    García-Navarro A, González-Puga C, Escames G et al (2007) Cellular mechanisms involved in the melatonin inhibition of HT-29 human colon cancer cell proliferation in culture. J Pineal Res 43:195–205CrossRefPubMedGoogle Scholar
  29. 29.
    Yang QH, Xu JN, Xu RK, Pang SF (2007) Antiproliferative effects of melatonin on the growth of rat pituitary prolactin-secreting tumor cells in vitro. J Pineal Res 42:131–138CrossRefGoogle Scholar
  30. 30.
    Rubio S, Estevez F, Cabrera J, Reiter RJ, Loro J, Quintana J (2007) Inhibition of proliferation and induction of apoptosis by melatonin in human myeloid HL-60 cells. J Pineal Res 42:131–138CrossRefPubMedGoogle Scholar
  31. 31.
    Cos S, García-Bolado A, Sánchez-Barceló EJ (2001) Direct antiproliferative effects of melatonin on two metastatic cell sublines of mouse melanoma (B16B16 and PG19). Melanoma Res 11:197–201CrossRefPubMedGoogle Scholar
  32. 32.
    Li Y, Li S, Zhou Y et al (2017) Melatonin for prevention and treatment of cancer. Oncotarget 8:39896–39921PubMedPubMedCentralGoogle Scholar
  33. 33.
    Rosado JA, Lopez JJ, Gomez-Arteta E, Redondo PC, Salido GM, Pariente JA (2006) Early caspase-3 activation independent of apoptosis is required for cellular function. J Cell Physiol 209:142–152CrossRefPubMedGoogle Scholar
  34. 34.
    Casado-Zapico S, Rodriguez-Blanco J, Garcia-Santos G (2010) Synergistic antitumor effect of melatonin with several chemotherapeutic drugs on human Ewing sarcoma cancer cells: potentiation of the extrinsic apoptotic pathway. J Pineal Res 48:72–80CrossRefPubMedGoogle Scholar
  35. 35.
    Fan LL, Sun GP, Wang ZG (2010) Melatonin and doxorubicin synergistically induce cell apoptosis in human hepatoma cell lines. World J Gastroenterol 16:1473–1481CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Koh W, Jeond SJ, Lee HJ (2011) Melatonin promotes puromycin-induced apoptosis with activation of caspase-3 and 5′-adenosine monophosphate-activated kinase-alpha in human leukaemia HL-60 cells. J Pineal Res 50:367–373CrossRefPubMedGoogle Scholar
  37. 37.
    Fic M, Podhorska-Okolow M, Dziegiel P et al (2007) Effect of melatonin on cytotoxicity of doxorubicin toward selected cell lines (human keratinocytes, lung cancer cell line A-549, laryngeal cancer cell line Hep-2). In Vivo 21:513–518PubMedGoogle Scholar
  38. 38.
    Gao Y, Xiao X, Zhang C et al (2017) Melatonin synergizes the chemotherapeutic effect of 5-fluorouracil in colon cancer by suppressing PI3K/AKT and NF-κB/iNOS signaling pathways. J Pineal Res. doi: 10.1111/jpi.12380 PubMedCentralGoogle Scholar
  39. 39.
    Majesterek I, Glock E, Blasiak J et al (2005) A comparison of the action of amifostine and melatonin on DNA-damaging effects and apoptosis induced by idarubicin in normal and cancer cells. J Pineal Res 38:254–263CrossRefGoogle Scholar
  40. 40.
    Bennukul K, Numkliang S, Leardkamolkarn V (2014) Melatonin attenuates cisplatin-induced HepG2 cell death via the regulation of mTOR and ERCC1 expressions. World J Hepatol 6:230–242CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Kim JH, Jeong SJ, Kim B et al (2012) Melatonin synergistically enhances cisplatin-induced apoptosis via the dephosphorylation of ERK/p90 ribosomal S6 kinase/heat shock protein 27 in SK-OV-3 cells. J Pineal Res 52:244–252CrossRefPubMedGoogle Scholar
  42. 42.
    Futagami M, Sato S, Sakamoto T et al (2001) Effects of melatonin on the proliferation and cis-diamminedichloroplatinum (CDDP) sensitivity of cultured human ovarian cancer cells. Gynecol Oncol 82:544–549CrossRefPubMedGoogle Scholar
  43. 43.
    Tan DX, Manchester LC, Terron MP, Flores LJ, Tamura H, Reiter RJ (2007) Melatonin as a naturally occurring co-substrate of quinone reductase-2, the putative MT3 melatonin membrane receptor: hypothesis and significance. J Pineal Res 43:317–320CrossRefPubMedGoogle Scholar
  44. 44.
    Boutin JA, Bonnaud A, Brasseur C et al (2017) New MT2 melatonin receptor-selective ligands: agonists and partial agonists. Int J Mol Sci 18:1347. doi: 10.3390/ijms18071347 CrossRefPubMedCentralGoogle Scholar
  45. 45.
    Paroni R, Terraneo L, Bonomini F et al (2014) Antitumour activity of melatonin in a mouse model of human prostate cancer: relationship with hypoxia signaling. J Pineal Res 57:43–52CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Roberto Pariente
    • 1
  • Ignacio Bejarano
    • 1
  • Javier Espino
    • 1
  • Ana B. Rodríguez
    • 1
  • José A. Pariente
    • 1
  1. 1.Department of Physiology (Neuroimmunophysiology and Chrononutrition Research Group), Faculty of ScienceUniversity of ExtremaduraBadajozSpain

Personalised recommendations