Skip to main content

Advertisement

Log in

Molecular study of ABCB1 gene and its correlation with imatinib response in chronic myeloid leukemia

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

The introduction and success of imatinib mesylate have become a paradigm shift in chronic myeloid leukemia (CML) treatment. However, despite its high efficiency, resistance to imatinib has emerged as a significant problem, which may in part be caused by pharmacogenetic variability. Three single-nucleotide polymorphisms (C1236T, G2677T/A, C3435T) and/or mRNA expression changes of ABCB1 gene were demonstrated to be associated with inter-individual variability of imatinib response in CML patients. In this study, we aimed to examine whether genetic variations and/or altered expression of ABCB1 gene may influence response to imatinib.

Methods

Sixty nine CML Tunisian patients, undergoing imatinib therapy, were enrolled in this study. These were divided into two groups: responders and non-responders to imatinib. The relative transcript expression levels of ABCB1 gene and the distribution of allele and genotype frequency of ABCB1 SNPs were compared between these two categories of patients. Linkage disequilibrium tests and haplotypes analysis were also studied.

Results

Our results showed that the mRNA expression level of ABCB1 gene did not differ significantly between the two categories of patients. In addition, results obtained from ABCB1 polymorphisms study and their correlation with imatinib response showed that the optimal response rate to imatinib did not differ significantly between C1236T, G2677T/A or C3435T genotypes. However, haplotype analysis showed that the 1236C–2677A–3435C haplotype was observed only in imatinib non-responders’ patients suggesting that CAC haplotype was linked to higher risk of imatinib resistance.

Conclusion

Furthermore, analyses of ABCB1 haplotypes should be taken into account to study the relationship between ABCB1 genotypes and imatinib efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rowley JD (1973) A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and giemsa staining. Nature 243:290–293. doi:10.1038/243290a0

    Article  CAS  PubMed  Google Scholar 

  2. Quintás-Cardama A, Cortes JE (2006) Chronic myeloid leukemia: diagnosis and treatment. Mayo Clin Proc 81:973–988. doi:10.4065/81.7.973

    Article  PubMed  Google Scholar 

  3. Talpaz M (2002) Imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: results of a phase 2 study. Blood 99:1928–1937. doi:10.1182/blood.V99.6.1928

    Article  CAS  PubMed  Google Scholar 

  4. Apperley JF (2007) Part I: mechanisms of resistance to imatinib in chronic myeloid leukaemia. Lancet Oncol 8:1018–1029. doi:10.1016/S1470-2045(07)70342-X

    Article  CAS  PubMed  Google Scholar 

  5. Soverini S, Hochhaus A, Nicolini FE et al (2011) BCR-ABL kinase domain mutation analysis in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors: recommendations from an expert panel on behalf of European LeukemiaNet. Blood 118:1208–1215. doi:10.1182/blood-2010-12-326405

    Article  CAS  PubMed  Google Scholar 

  6. Soltani I, Douzi K, Gharbi H et al (2017) Downregulation of miR-451 in Tunisian chronic myeloid leukemia patients: potential implication in imatinib resistance. Hematology 22:201–207. doi:10.1080/10245332.2016.1252020

    Article  CAS  PubMed  Google Scholar 

  7. Ben Hassine I, Gharbi H, Soltani I et al (2017) hOCT1 gene expression predict for optimal response to imatinib in Tunisian patients with chronic myeloid leukemia. Cancer Chemother Pharmacol 79:737–745. doi:10.1007/s00280-017-3266-0

    Article  CAS  PubMed  Google Scholar 

  8. Thomas J (2004) Active transport of imatinib into and out of cells: implications for drug resistance. Blood 104:3739–3745. doi:10.1182/blood-2003-12-4276

    Article  CAS  PubMed  Google Scholar 

  9. Dulucq S, Bouchet S, Turcq B et al (2008) Multidrug resistance gene (MDR1) polymorphisms are associated with major molecular responses to standard-dose imatinib in chronic myeloid leukemia. Blood 112:2024–2027. doi:10.1182/blood-2008-03-147744

    Article  CAS  PubMed  Google Scholar 

  10. Ni L-N, Li J-Y, Miao K-R et al (2011) Multidrug resistance gene (MDR1) polymorphisms correlate with imatinib response in chronic myeloid leukemia. Med Oncol 28:265–269. doi:10.1007/s12032-010-9456-9

    Article  CAS  PubMed  Google Scholar 

  11. Marzolini C, Paus E, Buclin T, Kim RB (2004) Polymorphisms in human MDR1 (P-glycoprotein): recent advances and clinical relevance. Clin Pharmacol Ther 75:13–33. doi:10.1016/j.clpt.2003.09.012

    Article  CAS  PubMed  Google Scholar 

  12. Hodges LM, Markova SM, Chinn LW et al (2011) Very important pharmacogene summary. Pharmacogenet Genomics 21:152–161. doi:10.1097/FPC.0b013e3283385a1c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brambila-Tapia AJ-L (2013) MDR1 (ABCB1) polymorphisms: functional effects and clinical implications. Rev Invest Clín Org Hosp Enfermedades Nutr 65:445–454

    Google Scholar 

  14. Ali MAM, Elsalakawy WA (2014) ABCB1 haplotypes but not individual SNPs predict for optimal response/failure in Egyptian patients with chronic-phase chronic myeloid leukemia receiving imatinib mesylate. Med Oncol. doi:10.1007/s12032-014-0279-y

    Google Scholar 

  15. Vivona D, Lima LT, Rodrigues AC et al (2014) ABCB1 haplotypes are associated with P-gp activity and affect a major molecular response in chronic myeloid leukemia patients treated with a standard dose of imatinib. Oncol Lett 7:1313–1319. doi:10.3892/ol.2014.1857

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Skoglund K, Moreno SB, Baytar M et al (2013) ABCB1 haplotypes do not influence transport or efficacy of tyrosine kinase inhibitors in vitro. Pharmacogenomics Pers Med 6:63–72. doi:10.2147/PGPM.S45522

    Article  CAS  Google Scholar 

  17. Solali S, Kaviani S, Movassaghpour AA, Aliparasti MR (2013) Real-time polymerase chain reaction testing for quantitative evaluation of hOCT1 and MDR1 expression in patients with chronic myeloid leukemia resistant to imatinib. Lab Med 44:13–19. doi:10.1309/LMP1ECAE30JSVZEP

    Article  Google Scholar 

  18. da Cunha Vasconcelos F, Mauricio Scheiner MA, Moellman-Coelho A et al (2016) Low ABCB1 and high OCT1 levels play a favorable role in the molecular response to imatinib in CML patients in the community clinical practice. Leuk Res 51:3–10. doi:10.1016/j.leukres.2016.10.005

    Article  Google Scholar 

  19. Malhotra H, Sharma P, Malhotra B et al (2015) Molecular response to imatinib & its correlation with mRNA expression levels of imatinib influx & efflux transporters in patients with chronic myeloid leukaemia in chronic phase. Indian J Med Res 142:175. doi:10.4103/0971-5916.164250

    Article  PubMed  PubMed Central  Google Scholar 

  20. Razga F, Racil Z, Machova Polakova K et al (2011) The predictive value of human organic cation transporter 1 and ABCB1 expression levels in different cell populations of patients with de novo chronic myelogenous leukemia. Int J Hematol 94:303–306. doi:10.1007/s12185-011-0924-6

    Article  PubMed  Google Scholar 

  21. Baccarani M, Deininger MW, Rosti G et al (2013) European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood 122:872–884. doi:10.1182/blood-2013-05-501569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chomzynski P (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal Biochem 162:156–159. doi:10.1006/abio.1987.9999

    Article  Google Scholar 

  23. Cross NC, Melo JV, Feng L, Goldman JM (1994) An optimized multiplex polymerase chain reaction (PCR) for detection of BCR-ABL fusion mRNAs in haematological disorders. Leukemia 8:186–189

    CAS  PubMed  Google Scholar 

  24. Menif S, Zarrouki S, Jeddi R et al (2009) Quantitative detection of bcr-abl transcripts in chronic myeloid leukemia. Pathol Biol 57:388–391. doi:10.1016/j.patbio.2007.12.010

    Article  CAS  PubMed  Google Scholar 

  25. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108. doi:10.1038/nprot.2008.73

    Article  CAS  PubMed  Google Scholar 

  26. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408. doi:10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  27. Chomczynski P (1993) A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques 15(532–534):536–537

    Google Scholar 

  28. Ye J, Coulouris G, Zaretskaya I et al (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13:134. doi:10.1186/1471-2105-13-134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li Z, Zhang Z, He Z et al (2009) A partition-ligation-combination-subdivision EM algorithm for haplotype inference with multiallelic markers: update of the SHEsis (http://analysis.bio-x.cn). Cell Res 19:519–523. doi:10.1038/cr.2009.33

    Article  CAS  PubMed  Google Scholar 

  30. Yong Y, Lin HE (2005) SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res 15:97–98

    Article  Google Scholar 

  31. Quintás-Cardama A, Kantarjian HM, Cortes JE (2009) Mechanisms of primary and secondary resistance to imatinib in chronic myeloid leukemia. Cancer Control J Moffitt Cancer Cent 16:122–131

    Article  Google Scholar 

  32. Prejzner W (2002) Relationship of the BCR gene breakpoint and the type of BCR/ABL transcript to clinical course, prognostic indexes and survival in patients with chronic myeloid leukemia. Med Sci Monit 8:BR193–BR197

    CAS  PubMed  Google Scholar 

  33. Jain P, Kantarjian H, Patel KP et al (2016) Impact of BCR-ABL transcript type on outcome in patients with chronic-phase CML treated with tyrosine kinase inhibitors. Blood 127:1269–1275. doi:10.1182/blood-2015-10-674242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. de Lemos JAR, de Oliveira CM, Scerni ACC et al (2005) Differential molecular response of the transcripts B2A2 and B3A2 to imatinib mesylate in chronic myeloid leukemia. Genet Mol Res GMR 4:803–811

    PubMed  Google Scholar 

  35. Chakrabarti P, Chakrabarty S, Aich R et al (2014) Incidence of BCR-ABL transcript variants in patients with chronic myeloid leukemia: their correlation with presenting features, risk scores and response to treatment with imatinib mesylate. Indian J Med Paediatr Oncol 35:26. doi:10.4103/0971-5851.133707

    Article  PubMed  PubMed Central  Google Scholar 

  36. Udomsakdi-Auewarakul C, U-Pratya Y, Boonmoh S, Vatanavicharn S (2000) Detection of molecular variants of BCR-ABL gene in bone marrow and blood of patients with chronic myeloid leukemia by reverse-transcriptase polymerase chain reaction (RT-PCR). J Med Assoc Thail Chotmaihet Thangphaet 83:928–935

    CAS  Google Scholar 

  37. Polillo M, Galimberti S, Baratè C et al (2015) Pharmacogenetics of BCR/ABL inhibitors in chronic myeloid leukemia. Int J Mol Sci 16:22811–22829. doi:10.3390/ijms160922811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Galeotti L, Ceccherini F, Domingo D et al (2017) Association of the hOCT1/ABCB1 genotype with efficacy and tolerability of imatinib in patients affected by chronic myeloid leukemia. Cancer Chemother Pharmacol 79:767–773. doi:10.1007/s00280-017-3271-3

    Article  CAS  PubMed  Google Scholar 

  39. Maffioli M, Camós M, Gaya A et al (2011) Correlation between genetic polymorphisms of the hOCT1 and MDR1 genes and the response to imatinib in patients newly diagnosed with chronic-phase chronic myeloid leukemia. Leuk Res 35:1014–1019. doi:10.1016/j.leukres.2010.12.004

    Article  CAS  PubMed  Google Scholar 

  40. Eadie LN, Dang P, Saunders VA et al (2016) The clinical significance of ABCB1 overexpression in predicting outcome of CML patients undergoing first-line imatinib treatment. Leukemia. doi:10.1038/leu.2016.179

    Google Scholar 

  41. Kim DH, Sriharsha L, Xu W et al (2009) Clinical relevance of a pharmacogenetic approach using multiple candidate genes to predict response and resistance to imatinib therapy in chronic myeloid leukemia. Clin Cancer Res 15:4750–4758. doi:10.1158/1078-0432.CCR-09-0145

    Article  CAS  PubMed  Google Scholar 

  42. Dulucq S, Preudhomme C, Guilhot F, Mahon F-X (2010) Response: Is there really a relationship between multidrug resistance gene (MDR1) polymorphisms and major molecular response to imatinib in chronic myeloid leukemia? Blood 116:6145–6146. doi:10.1182/blood-2010-08-298794

    Article  CAS  Google Scholar 

  43. Takahashi N, Miura M, Scott SA et al (2010) Influence of CYP3A5 and drug transporter polymorphisms on imatinib trough concentration and clinical response among patients with chronic phase chronic myeloid leukemia. J Hum Genet 55:731–737. doi:10.1038/jhg.2010.98

    Article  CAS  PubMed  Google Scholar 

  44. Vine J, Cohen SB, Ruchlemer R et al (2014) Polymorphisms in the human organic cation transporter and the multidrug resistance gene: correlation with imatinib levels and clinical course in patients with chronic myeloid leukemia. Leuk Lymphoma 55:2525–2531. doi:10.3109/10428194.2014.893307

    Article  CAS  PubMed  Google Scholar 

  45. Au A, Aziz Baba A, Goh AS et al (2014) Association of genotypes and haplotypes of multi-drug transporter genes ABCB1 and ABCG2 with clinical response to imatinib mesylate in chronic myeloid leukemia patients. Biomed Pharmacother 68:343–349. doi:10.1016/j.biopha.2014.01.009

    Article  CAS  PubMed  Google Scholar 

  46. Angelini S, Soverini S, Ravegnini G et al (2013) Association between imatinib transporters and metabolizing enzymes genotype and response in newly diagnosed chronic myeloid leukemia patients receiving imatinib therapy. Haematologica 98:193–200. doi:10.3324/haematol.2012.066480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zheng Q, Wu H, Yu Q et al (2015) ABCB1 polymorphisms predict imatinib response in chronic myeloid leukemia patients: a systematic review and meta-analysis. Pharmacogenomics J 15:127–134. doi:10.1038/tpj.2014.54

    Article  CAS  PubMed  Google Scholar 

  48. Lardo M, Castro M, Moiraghi B et al (2015) MDR1/ABCB1 gene polymorphisms in patients with chronic myeloid leukemia. Blood Res 50:154. doi:10.5045/br.2015.50.3.154

    Article  PubMed  PubMed Central  Google Scholar 

  49. Yin C, Chen W, Zhong Q et al (2016) Association between the concentration of imatinib in bone marrow mononuclear cells, mutation status of ABCB1 and therapeutic response in patients with chronic myelogenous leukemia. Exp Ther Med. doi:10.3892/etm.2016.3127

    Google Scholar 

  50. de Lima LT, Vivona D, Bueno CT et al (2014) Reduced ABCG2 and increased SLC22A1 mRNA expression are associated with imatinib response in chronic myeloid leukemia. Med Oncol. doi:10.1007/s12032-014-0851-5

    PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank all the staff members of the Laboratory of Molecular and Cellular Hematology, Pasteur Institute of Tunis (LR11 IPT07). This work was supported by the Ministry of Higher Education and Scientific Research in Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Islem Ben Hassine.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Hassine, I., Gharbi, H., Soltani, I. et al. Molecular study of ABCB1 gene and its correlation with imatinib response in chronic myeloid leukemia. Cancer Chemother Pharmacol 80, 829–839 (2017). https://doi.org/10.1007/s00280-017-3424-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-017-3424-4

Keywords

Navigation