Skip to main content

Advertisement

Log in

Phase I trial of daily triapine in combination with cisplatin chemotherapy for advanced-stage malignancies

  • Clinical Trial Report
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Advanced-stage malignancies have increased deoxyribonucleotide demands in DNA replication and repair, making deoxyribonucleotide supply a potential exploitable target for therapy based on ribonucleotide reductase (RNR) inhibition.

Methods

A dose-finding phase I trial was conducted of intravenous (i.v.) triapine, a small-molecule RNR inhibitor, and cisplatin chemotherapy in patients with advanced-stage solid tumor malignancies. Patients received dose-finding levels of i.v. triapine (48–96 mg/m2) and i.v. cisplatin (20–75 mg/m2) on 1 of 3 different schedules. The primary endpoint was to identify the maximum tolerated dose of a triapine–cisplatin combination. Secondary endpoints included the rate of triapine–cisplatin objective response and the pharmacokinetics and bioavailability of a single oral triapine dose. (Clinicaltrials.gov number, NCT00024323).

Results

The MTD was 96 mg/m2 triapine daily days 1–4 and 75 mg/m2 cisplatin split over day 2 and day 3. Frequent grade 3 or 4 adverse events included fatigue, dyspnea, leukopenia, thrombocytopenia, and electrolyte abnormalities. No objective responses were observed; 5 (50%) of 10 patients treated at the MTD had stable disease. Pharmacokinetics indicated an oral triapine bioavailability of 88%.

Conclusions

The triapine–cisplatin combination may be given safely in patients with advanced-stage solid tumor malignancies. On the basis of these results, a phase I trial adequately powered to evaluate oral triapine bioavailability in women with advanced-stage uterine cervix or vulvar cancers is underway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Thelander L, Reichard P (1979) Reduction of ribonucleotides. Annu Rev Biochem 48:133–158. doi:10.1146/annurev.bi.48.070179.001025

    Article  CAS  PubMed  Google Scholar 

  2. Barker CA, Burgan WE, Carter DJ, Cerna D, Gius D, Hollingshead MG, Camphausen K, Tofilon PJ (2006) In vitro and in vivo radiosensitization induced by the ribonucleotide reductase inhibitor Triapine (3-aminopyridine-2-carboxaldehyde-thiosemicarbazone). Clin Cancer Res 12(9):2912–2918. doi:10.1158/1078-0432.ccr-05-2860

    Article  CAS  PubMed  Google Scholar 

  3. Kunos CA, Chiu SM, Pink J, Kinsella TJ (2009) Modulating radiation resistance by inhibiting ribonucleotide reductase in cancers with virally or mutationally silenced p53 protein. Radiat Res 172(6):666–676. doi:10.1667/rr1858.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kunos CA, Radivoyevitch T, Pink J, Chiu SM, Stefan T, Jacobberger J, Kinsella TJ (2010) Ribonucleotide reductase inhibition enhances chemoradiosensitivity of human cervical cancers. Radiat Res 174(5):574–581. doi:10.1667/rr2273.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Xue L, Zhou B, Liu X, Qiu W, Jin Z, Yen Y (2003) Wild-type p53 regulates human ribonucleotide reductase by protein-protein interaction with p53R2 as well as hRRM2 subunits. Cancer Res 63(5):980–986

    CAS  PubMed  Google Scholar 

  6. Hakansson P, Hofer A, Thelander L (2006) Regulation of mammalian ribonucleotide reduction and dNTP pools after DNA damage and in resting cells. J Biol Chem 281(12):7834–7841. doi:10.1074/jbc.M512894200

    Article  CAS  PubMed  Google Scholar 

  7. Reece SY, Hodgkiss JM, Stubbe J, Nocera DG (2006) Proton-coupled electron transfer: the mechanistic underpinning for radical transport and catalysis in biology. Philos Trans R Soc Lond B Biol Sci 361(1472):1351–1364. doi:10.1098/rstb.2006.1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fairman JW, Wijerathna SR, Ahmad MF, Xu H, Nakano R, Jha S, Prendergast J, Welin RM, Flodin S, Roos A, Nordlund P, Li Z, Walz T, Dealwis CG (2011) Structural basis for allosteric regulation of human ribonucleotide reductase by nucleotide-induced oligomerization. Nat Struct Mol Biol 18(3):316–322. doi:10.1038/nsmb.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kunos CA, Radivoyevitch T, Kresak A, Dawson D, Jacobberger J, Yang B, Abdul-Karim FW (2012) Elevated ribonucleotide reductase levels associate with suppressed radiochemotherapy response in human cervical cancers. Int J Gynecol Cancer 22(9):1463–1469. doi:10.1097/IGC.0b013e318270577f

    PubMed  PubMed Central  Google Scholar 

  10. Kunos CA, Winter K, Dicker AP, Small W Jr, Abdul-Karim FW, Dawson D, Jhingran A, Valicenti R, Weidhaas JB, Gaffney DK (2013) Ribonucleotide reductase expression in cervical cancer: a radiation therapy oncology group translational science analysis. Int J Gynecol Cancer 23(4):615–621. doi:10.1097/IGC.0b013e31828b4eb5

    Article  PubMed  PubMed Central  Google Scholar 

  11. Popovic-Bijelic A, Kowol CR, Lind ME, Luo J, Himo F, Enyedy EA, Arion VB, Graslund A (2011) Ribonucleotide reductase inhibition by metal complexes of Triapine (3-aminopyridine-2-carboxaldehyde thiosemicarbazone): a combined experimental and theoretical study. J Inorg Biochem 105(11):1422–1431. doi:10.1016/j.jinorgbio.2011.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kunos CA, Waggoner S, von Gruenigen V, Eldermire E, Pink J, Dowlati A, Kinsella TJ (2010) Phase I trial of pelvic radiation, weekly cisplatin, and 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP, NSC #663249) for locally advanced cervical cancer. Clin Cancer Res 16(4):1298–1306. doi:10.1158/1078-0432.ccr-09-2469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kunos CA, Radivoyevitch T, Waggoner S, Debernardo R, Zanotti K, Resnick K, Fusco N, Adams R, Redline R, Faulhaber P, Dowlati A (2013) Radiochemotherapy plus 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP, NSC #663249) in advanced-stage cervical and vaginal cancers. Gynecol Oncol 130(1):75–80. doi:10.1016/j.ygyno.2013.04.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kunos CA, Sherertz TM (2014) Long-term disease control with triapine-based radiochemotherapy for patients with stage IB2-IIIB cervical cancer. Front Oncol 4:184. doi:10.3389/fonc.2014.00184

    Article  PubMed  PubMed Central  Google Scholar 

  15. Murren J, Modiano M, Plezia P, Doyon A, Bagulho T, Johnson B, Sznol M (2003) A phase I study of 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (Triapine) in combination with cisplatin (CDDP). In: Proceedings American society clinical oncology 22:160a (abstract 643)

  16. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, Verweij J, van Glabbeke M, van Oosterom AT, Christian MC, Gwyther SG (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92(3):205–216

    Article  CAS  PubMed  Google Scholar 

  17. Kunos C, Radivoyevitch T, Abdul-Karim FW, Fanning J, Abulafia O, Bonebrake AJ, Usha L (2012) Ribonucleotide reductase inhibition restores platinum-sensitivity in platinum-resistant ovarian cancer: a gynecologic oncology group study. J Transl Med 10:79. doi:10.1186/1479-5876-10-79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kunos CA, Ferris G, Pyatka N, Pink J, Radivoyevitch T (2011) Deoxynucleoside salvage facilitates DNA repair during ribonucleotide reductase blockade in human cervical cancers. Radiat Res 176(4):425–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kunos CA, Radivoyevitch T, Ingalls ST, Hoppel CL (2012) Management of 3-aminopyridine-2-carboxaldehyde thiosemicarbazone-induced methemoglobinemia. Future Oncol 8(2):145–150. doi:10.2217/fon.11.147 (London, England)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge posthumously John Murren, MD, of the Yale Cancer Center who served as principal investigator for this trial prior to his death in 2005. The authors would like to thank the clinical research staff of the Yale Cancer Center and of the Arizona Clinical Research Center for their hard work and efforts to support this clinical trial. Finally, the authors would also like to thank the patients and their family members for being involved in this clinical trial. Support: Grant UM1-CA186690 (NCI-CTEP). This project used the UPCI Cancer Pharmacokinetics and Pharmacodynamics Facility (CPPF) and was supported in part by award P30-CA47904.

Funding

This study was funded by Vion Pharmaceuticals, Incorporated (Contract Number CLI-021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles A. Kunos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kunos, C.A., Chu, E., Beumer, J.H. et al. Phase I trial of daily triapine in combination with cisplatin chemotherapy for advanced-stage malignancies. Cancer Chemother Pharmacol 79, 201–207 (2017). https://doi.org/10.1007/s00280-016-3200-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-016-3200-x

Keywords

Navigation