Skip to main content

Advertisement

Log in

Brain tumor-targeted delivery and therapy by focused ultrasound introduced doxorubicin-loaded cationic liposomes

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Brain tumor lacks effective delivery system for treatment. Focused ultrasound (FUS) can reversibly open BBB without impacts on normal tissues. As a potential drug carrier, cationic liposomes (CLs) have the ability to passively accumulate in tumor tissues for their positive charge. In this study, FUS introduced doxorubicin-loaded cationic liposomes (DOX-CLs) were applied to improve the efficiency of glioma-targeted delivery. Doxorubicin-loaded CLs (DOX-CLs) and quantum dot-loaded cationic liposomes (QD-CLs) were prepared using extrusion technology, and their characterizations were evaluated. With the advantage of QDs in tracing images, the glioma-targeted accumulation of FUS + CLs was evaluated by fluorescence imaging and flow cytometer. Cell survival rate, tumor volume, animal survival time, and brain histology in C6 glioma model were investigated to evaluate the glioma-targeted delivery of FUS + DOX-CLs. DOX-CLs and QD-CLs had suitable nanoscale sizes and high entrapment efficiency. The combined strategy of FUS introduced CLs significantly increased the glioma-targeted accumulation for load drugs. FUS + DOX-CLs showed the strongest inhibition on glioma based on glioma cell in vitro and glioma model in vivo experiments. From MRI and histological analysis, FUS + DOX-CLs group strongly suppressed the glioma progression and extended the animal survival time to 81.2 days. Among all the DOX treatment groups, FUS + DOX-CLs group showed the best cell viability and highest level of tumor apoptosis and necrosis. Combining the advantages of BBB reversible opening by FUS and glioma-targeted binding by CLs, ultrasound introduced cationic liposomes could achieve glioma-targeted delivery, which might be developed as a potential strategy for future brain tumor therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DOX:

Doxorubicin

CLs:

Cationic liposomes

FUS:

Focused ultrasound

MRI:

Magnetic resonance images

DOX-CLs:

Doxorubicin-loaded cationic liposomes

QD:

Quantum dots

QD-CLs:

QD-loaded cationic liposomes

References

  1. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109

    Article  PubMed Central  PubMed  Google Scholar 

  2. Schneider T, Mawrin C, Scherlach C, Skalej M, Firsching R (2010) Glioma in adults. Dtsch Arztebl Int 107:799–807

    PubMed Central  PubMed  Google Scholar 

  3. Larjavaara S, Mäntylä R, Salminen T, Haapasalo H, Raitanen J, Jääskeläinen J, Auvinen A (2007) Incidence of glioma by anatomic location. Neuro Oncol 9:319–325

    Article  PubMed Central  PubMed  Google Scholar 

  4. Liu X, Cui W, Li B, Hong Z (2012) Targeted therapy for glioma using cyclic RGD-entrapped polyionic complex nanomicelles. Int J Nanomed 7:2853–2862

    Article  CAS  Google Scholar 

  5. Stan AC, Casares S, Radu D, Walter GF, Brumeanu TD (1999) Doxorubicin-induced cell death in highly invasive human gliomas. Anticancer Res 19:941–950

    CAS  PubMed  Google Scholar 

  6. Walter KA, Tamargo RJ, Olivi A, Burger PC, Brem H (1995) Intratumoral chemotherapy. Neurosurgery 37:1128–1145

    CAS  PubMed  Google Scholar 

  7. Voulgaris S, Partheni M, Karamouzis M, Dimopoulos P, Papadakis N, Kalofonos HP (2002) Intratumoral doxorubicin in patients with malignant brain gliomas. Am J Clin Oncol 25:60–64

    Article  PubMed  Google Scholar 

  8. Laquintana V, Trapani A, Denora N, Wang F, Gallo JM, Trapani G (2009) New strategies to deliver anticancer drugs to brain tumors. Expert Opin Drug Deliv 6(10):1017–1032

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA (2001) Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits. Radiology 220:640–646

    Article  CAS  PubMed  Google Scholar 

  10. Choi JJ, Pernot M, Small SA, Konofagou EE (2007) Noninvasive, transcranial and localized opening of the blood-brain barrier using focused ultrasound in mice. Ultrasound Med Biol 33:95–104

    Article  PubMed  Google Scholar 

  11. O’Reilly MA, Waspe AC, Ganguly M, Hynynen K (2011) Focused-ultrasound disruption of the blood–brain barrier using closely-timed short pulses: influence of sonication parameters and injection rate. Ultrasound Med Biol 37:587–594

    Article  PubMed Central  PubMed  Google Scholar 

  12. Sheikov N, McDannold N, Sharma S, Hynynen K (2008) Effect of focused ultrasound applied with an ultrasound contrast agent on the tight junctional integrity of the brain microvascular endothelium. Ultrasound Med Biol 34:1093–1104

    Article  PubMed Central  PubMed  Google Scholar 

  13. Vlachos F, Tung Y-S, Konofagou E (2011) Permeability dependence study of the focused ultrasound-induced blood–brain barrier opening at distinct pressures and microbubble diameters using DCE-MRI. Magn Reson Med 66:8218–8230

    Article  Google Scholar 

  14. Shang X, Wang P, Liu Y, Zhang Z, Xue Y (2011) Mechanism of low-frequency ultrasound in opening blood-tumor barrier by tight junction. J Mol Neurosci 43:364–369

    Article  CAS  PubMed  Google Scholar 

  15. Sheikov N, McDannold N, Vykhodtseva N, Jolesz F, Hynynen K (2004) Cellular mechanisms of the blood–brain barrier opening induced by ultrasound in presence of microbubbles. Ultrasound Med Biol 30:979–989

    Article  PubMed  Google Scholar 

  16. Hynynen K, Jolesz FA (1998) Demonstration of potential noninvasive ultrasound brain therapy through an intactskull. Ultrasound Med Biol 24:275–283

    Article  CAS  PubMed  Google Scholar 

  17. Aubry JF, Tanter M, Pernot M, Thomas JL, Fink M (2003) Experimental demonstration of noninvasive trans-skull adaptive focusing based on prior computed tomography scans. J Acoust Soc Am 113:84–93

    Article  CAS  PubMed  Google Scholar 

  18. Hynynen K, McDannold N, Clement G, Jolesz FA, Zadicario E, Killiany R, Moore T, Rosen D (2006) Preclinical testing of a phased array ultrasound system for MRI-guided noninvasive surgery of the brain-A primate study. Eur J Radiol 59:149–156

    Article  PubMed  Google Scholar 

  19. Goldenberg Neil M, Steinberg Benjamin E (2010) Surface charge: a key determinant of protein localization and function. Cancer Res 70:1277–1280

    Article  CAS  PubMed  Google Scholar 

  20. Hirko A, Tang F, Hughes JA (2003) Cationic lipid vectors for plasmid DNA delivery. Curr Med Chem 10:1185–1193

    Article  CAS  PubMed  Google Scholar 

  21. Bally MB, Masin D, Nayar R, Cullis PR, Mayer LD (1994) Transfer of liposomal drug carriers from the blood to the peritoneal cavity of normal and ascitic tumor-bearing mice. Cancer Chemother Pharmacol 34:137–146

    Article  CAS  PubMed  Google Scholar 

  22. Huang SK, Lee KD, Hong K, Friend DS, Papahadjopolous D (1992) Microscopic localization of sterically stabilized liposomes in colon carcinoma-bearing mice. Cancer Res 52:5135–5143

    CAS  PubMed  Google Scholar 

  23. Huang SK, Martin FJ, Jay G, Vogel J, Papahadjopolous D, Friend DS (1993) Extravasation and transcytosis of liposomes in Kaposi’s sarcoma-like dermal lesions of transgenic mice bearing the HIV tat gene. Am J Pathol 143:10–14

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Jovin TM (2003) Quantum dots finally come of age. Nat Biotechnol 21:32–33

    Article  CAS  PubMed  Google Scholar 

  25. Haran G, Cohen R, Bar LK, Barenholz Y (1993) Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases. Biochim Biophys Acta 1151:201–215

    Article  CAS  PubMed  Google Scholar 

  26. Golubenko TA (1991) Low-frequency ultrasound in the treatment of osteoarthrosis patients. Vopr Kurortol Fizioter Lech Fiz Kult 2:36–39

    PubMed  Google Scholar 

  27. Serena T, Lee SK, Lam K, Attar P, Meneses P, Ennis W (2009) The impact of noncontact, nonthermal, low-frequency ultrasound on bacterial counts in experimental and chronic wounds. Ostomy Wound Manage 55:22–30

    PubMed  Google Scholar 

  28. Claes L, Willie B (2007) The enhancement of bone regeneration by ultrasound. Prog Biophys Mol Biol 93:384–398

    Article  PubMed  Google Scholar 

  29. Behrens S, Daffertshofer M, Spiegel D, Hennerici M (1999) Low frequency, low-intensity ultrasound accelerates thrombolysis through the skull. Ultrasound Med Biol 25:269–273

    Article  CAS  PubMed  Google Scholar 

  30. McDannold N, Vykhodtseva N, Hynynen K (2008) Effects of acoustic parameters and ultrasound contrast agent dose on focused-ultrasound induced blood–brain barrier disruption. Ultrasound Med Biol 34:930–937

    Article  PubMed Central  PubMed  Google Scholar 

  31. Kroll RA, Neuwelt EA (1998) Outwitting the blood–brain barrier for therapeutic purposes: osmotic opening and other means. Neurosurgery 42:1083–1100

    Article  CAS  PubMed  Google Scholar 

  32. Anajafi T, Mallik S (2015) Polymersome-based drug-delivery strategies for cancer therapeutics. Ther Deliv 4:521–534

    Article  Google Scholar 

  33. Tahover E, Patil YP, Gabizon AA (2015) Emerging delivery systems to reduce doxorubicin cardiotoxicity and improve therapeutic index: focus on liposomes. Anticancer Drugs 26:241–258

    Article  CAS  PubMed  Google Scholar 

  34. Itakura S, Hama S, Ohgita T, Kogure K (2014) Development of nanoparticles incorporating a novel liposomal membrane destabilization peptide for efficient release of cargos into cancer cells. PLoS One 9(10):111–181

    Article  Google Scholar 

  35. Qu MH, Zeng RF, Fang S, Dai QS, Li HP, Long JT (2014) Liposome-based co-delivery of siRNA and docetaxel for the synergistic treatment of lung cancer. Int J Pharm 474:112–122

    Article  CAS  PubMed  Google Scholar 

  36. Gifford I, Vreeland W, Grdanovska S, Burgett E, Kalinich J, Vergara V, Wang CK, Maimon E, Poster D, Al-Sheikhly M (2014) Liposome-based delivery of a boron-containing cholesteryl ester for high-LET particle-induced damage of prostate cancer cells: a boron neutron capture therapy study. Int J Radiat Biol 90:480–485

    Article  CAS  PubMed  Google Scholar 

  37. Zheng H, Hu Y, Huang W, de Villiers S, Pentel P, Zhang J, Dorn H, Ehrich M, Zhang C (2015) Negatively charged carbon nanohorn supported cationic liposome nanoparticles: a novel delivery vehicle for anti-nicotine vaccine. J Biomed Nanotechnol 11(12):2197–2210

    Article  CAS  PubMed  Google Scholar 

  38. Tada R, Hidaka A, Iwase N, Takahashi S, Yamakita Y, Iwata T, Muto S, Sato E, Takayama N, Honjo E, Kiyono H, Kunisawa J, Aramaki Y (2015) Intranasal immunization with DOTAP cationic liposomes combined with DC-cholesterol induces potent antigen-specific mucosal and systemic immune responses in mice. PLoS one 10(10):e0139785

    Article  PubMed Central  PubMed  Google Scholar 

  39. Dicheva BM, ten Hagen TL, Schipper D, Seynhaeve AL, van Rhoon GC, Eggermont AM, Koning GA (2014) Targeted and heat-triggered doxorubicin delivery to tumors by dual targeted cationic thermosensitive liposomes. J Control Release 10(195):37–48

  40. Chaudhary AK, Yadav N, Bhat TA, O’Malley J, Kumar S, Chandra D (2015) A potential role of X-linked inhibitor of apoptosis protein in mitochondrial membrane permeabilization and its implication in cancer therapy. Drug Discov Today S1359–6446:285–288

    Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Grant Nos. 81360195, 81301982, 81571392, and 81272160), Zhejiang Provincial Natural Science Foundation of China (Grant No. LY12H31003), Zhejiang Provincial Foundation for Health Department (Grant No. 2015ZDA023), Medicine Grant from Wenzhou Bureau of Science and Technology (Grant Nos. Y2014730 and Y20140726). Major Scientific Project of Guangdong Province(Grant No. 2012A080201010). Science and Technology Program of Guangzhou, China (201508020001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying-Zheng Zhao or Cui-Tao Lu.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

280_2015_2926_MOESM1_ESM.tif

Fig. S1 Kaplan–Meier survival curves for the animals in different experimental groups. Supplementary material 1 (TIFF 20 kb)

280_2015_2926_MOESM2_ESM.tif

Fig. S2 TUNEL staining analysis for different experimental groups. *P < 0.05 and **P < 0.01 versus control group. Supplementary material 2 (TIFF 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Q., Mao, KL., Tian, FR. et al. Brain tumor-targeted delivery and therapy by focused ultrasound introduced doxorubicin-loaded cationic liposomes. Cancer Chemother Pharmacol 77, 269–280 (2016). https://doi.org/10.1007/s00280-015-2926-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-015-2926-1

Keywords

Navigation