Skip to main content

Advertisement

Log in

Pharmacodynamic modeling of combined chemotherapeutic effects predicts synergistic activity of gemcitabine and trabectedin in pancreatic cancer cells

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

This study investigates the combined effects of gemcitabine and trabectedin (ecteinascidin 743) in two pancreatic cancer cell lines and proposes a pharmacodynamic (PD) model to quantify their pharmacological interactions.

Methods

Effects of gemcitabine and trabectedin upon the pancreatic cancer cell lines MiaPaCa-2 and BxPC-3 were investigated using cell proliferation assays. Cells were exposed to a range of concentrations of the two drugs, alone and in combination. Viable cell numbers were obtained daily over 5 days. A model incorporating nonlinear cytotoxicity, transit compartments, and an interaction parameter ψ was used to quantify the effects of the individual drugs and combinations.

Results

Simultaneous fitting of temporal cell growth profiles for all drug concentrations provided reasonable cytotoxicity parameter estimates (the cell killing rate constant K max and the sensitivity constant KC 50) for each drug. The interaction parameter ψ was estimated as 0.806 for MiaPaCa-2 and 0.843 for BxPC-3 cells, suggesting that the two drugs exert modestly synergistic effects.

Conclusions

The proposed PD model enables quantification of the temporal profiles of drug combinations over a range of concentrations with drug-specific parameters. Based upon these in vitro studies, trabectedin may have augmented benefit in combination with gemcitabine. The PD model may have general relevance for the study of other cytotoxic drug combinations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Siegel R, Ma J, Zou Z, Jemal A (2014) Cancer statistics, 2014. CA Cancer J Clin 64:9–29. doi:10.3322/caac.21208 (Epub 2014 Jan 7)

    Article  PubMed  Google Scholar 

  2. Burris HA, Moore MJ, Andersen J, Green MR, Rothenberg ML, Modiano MR, Cripps MC, Portenoy RK, Storniolo AM, Tarassoff P, Nelson R, Dorr FA, Stephens CD, Von Hoff DD (1997) Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol 15:2403–2413

    PubMed  CAS  Google Scholar 

  3. Peter GJ, van der Wilt CL, van Moorsel CJ, Kroep JR, Bergman AM, Ackland SP (2000) Basis for effective combination cancer chemotherapy with antimetabolites. Pharmacol Ther 87:227–253

    Article  Google Scholar 

  4. Rinehart KL, Holt TG, Fregeau NL, Keifer PA, Wilson GR, Perun TJ Jr, Sakai R, Thompson AG, Stroh JG, Shield LS, Seigler DS, Li LH, Martin DG, Grimmelikhuijzen CJP, Gade G (1990) Bioactive compounds from aquatic and terrestrial sources. J Nat Prod 53:771–792

    Article  PubMed  CAS  Google Scholar 

  5. Cuevas C, Francesch A (2009) Development of Yondelis (trabectedin, ET-743): a semisynthetic process solves the supply problem. Nat Prod Rep 26:322–337

    Article  PubMed  CAS  Google Scholar 

  6. Mini E, Nobili S, Caciaqli B, Landini I, Mazzei T (2006) Cellular pharmacology of gemcitabine. Ann Oncol 17(Suppl 5):v7–12

    Article  PubMed  Google Scholar 

  7. D’Incalci M, Galmarini CM (2010) A review of trabectedin (ET-743): a unique mechanism of action. Mol Cancer Ther 9:2157–2163

    Article  PubMed  Google Scholar 

  8. Yip-Schneider MT, Sweeney CJ, Jung SH, Crowell PL, Marshall MS (2001) Cell cycle effects of nonsteroidal anti-inflammatory drugs and enhanced growth inhibition in combination with gemcitabine in pancreatic carcinoma cells. J Pharmacol Exp Ther 298:976–985

    PubMed  CAS  Google Scholar 

  9. Cappella P, Tomasoni D, Faretta M, Lupi M, Montalenti F, Viale F, Banzato F, D’Incalci M, Ubezio P (2001) Cell cycle effects of gemcitabine. Int J Cancer 93:401–408

    Article  PubMed  CAS  Google Scholar 

  10. Tavecchio M, Natoli C, Ubezio P, Erba E, D’Incalci M (2007) Dynamics of cell cycle phase perturbations by trabectedin (ET-743) in nucleotide excision repair (NER)-deficient and NER-proficient cells, unraveled by a novel mathematical simulation approach. Cell Prolif 40:885–904

    Article  PubMed  CAS  Google Scholar 

  11. Gajate C, An F, Mollinedo F (2002) Differential cytostatic and apoptotic effects of ecteinascidin-743 in cancer cells. Transcription-dependent cell cycle arrest and transcription-independent JNK and mitochondrial mediated apoptosis. J Biol Chem 277:41580–41589

    Article  PubMed  CAS  Google Scholar 

  12. Miller SC, Huang R, Sakamuru S, Shukla SJ, Attene-Ramos MS, Shinn P, Van Leer D, Leister W, Austin CP, Xia M (2010) Identification of known drugs that act as inhibitors of NF-kappaB signaling and their mechanism of action. Biochem Pharmacol 79:1272–1280

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Messersmith WA, Jimeno A, Ettinger D, Laheru D, Brahmer J, Lansey D, Khan Y, Donehower RC, Elsayed Y, Zannikos P, Hidalgo M (2008) Phase I trial of weekly trabectedin (Et-743) and gemcitabine in patients with advanced solid tumors. Cancer Chemother Pharmacol 63:181–188

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Loewe S (1953) The problem of synergism and antagonism of combined drugs. Arzneimittelforschung 3:285–290

    PubMed  CAS  Google Scholar 

  15. Gessner PK (1974) The isobolographic method applied to drug interactions. In: Moselli PL, Garattini S, Cohen SN (eds) Drug interactions. Raven Press, New York, pp 349–362

    Google Scholar 

  16. Terranova N, Germani M, Del Bene F, Magni P (2013) A predictive pharmacokinetic-pharmacodynamic model of tumor growth kinetics in xenograft mice after administration of anticancer agents given in combination. Cancer Chemother Pharmacol 72:471–482

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Earp J, Krzyzanski W, Chakraborty A, Zamacona MK, Jusko WJ (2004) Assessment of drug interactions relevant to pharmacodynamics indirect response models. J Pharmacokinet Pharmacodyn 31:345–380

    Article  PubMed  CAS  Google Scholar 

  18. Goteti K, Garner CE, Utley L, Dai J, Ashwell S, Moustakas DT, Gönen M, Schwartz GK, Kern SE, Zabludoff S, Brassil PJ (2010) Preclinical pharmacokinetic/pharmacodynamic models to predict synergistic effects of co-administered anti-cancer agents. Cancer Chemother Pharmacol 66:245–254. doi:10.1007/s00280-009-1153-z

    Article  PubMed  CAS  Google Scholar 

  19. Lobo ED, Balthasar JP (2002) Pharmacodynamic modeling of chemotherapeutic effects: application of a transit compartment model to characterize methotrexate effects in vitro. AAPS PharmSci 4:E42

    Article  PubMed  Google Scholar 

  20. Koch G, Walz A, Lahu G, Schropp J (2009) Modeling of tumor growth and anticancer effects of combination therapy. J Pharmacokinet Pharmacodyn 36:179–197

    Article  PubMed  CAS  Google Scholar 

  21. Chakraborty A, Jusko WJ (2002) Pharmacodynamic interaction of recombinant human interleukin-10 and prednisolone using in vitro whole blood lymphocyte proliferation. J Pharm Sci 91:1334–1342

    Article  PubMed  CAS  Google Scholar 

  22. Robertson TB (1923) The chemical basis of growth and senescence. J B Lippincott Company, Philadelphia

    Google Scholar 

  23. Simeoni M, Magni P, Cammia C, De Nicolao G, Croci V, Presenti E, Germani M, Poggesi I, Rocchetti M (2004) Predictive pharmacokinetic-pharmacodynamic modeling of tumor growth kinetics in xenograft models after administration of anticancer agents. Cancer Res 64:1094–1101

    Article  PubMed  CAS  Google Scholar 

  24. Rocchetti M, Simeoni M, Pesenti E, De Nicolao G, Poggesi I (2007) Predicting the active doses in humans from animal studies: a novel approach in oncology. Eur J Cancer 43:1862–1868

    Article  PubMed  CAS  Google Scholar 

  25. D’Argenio DZ, Schumitzky A, Wang X (2009) ADAPT 5 user’s guide: pharmacokinetic/pharmacodynamics systems analysis software. Biomedical Simulations Resource, Los Angeles

    Google Scholar 

  26. Ait-Oudhia S, Straubinger RM, Mager DE (2013) Systems pharmacological analysis of paclitaxel-mediated tumor priming that enhances nanocarrier deposition and efficacy. J Pharmacol Exp Ther 344:103–112. doi:10.1124/jpet.112.199109 (Epub 2012 Oct 3)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Jusko WJ (1971) Pharmacodynamics of chemotherapeutic effects: dose-time–response relationships for phase-nonspecific agents. J Pharm Sci 60:892–895

    Article  PubMed  CAS  Google Scholar 

  28. Deer EL, González-Hernández J, Coursen JD, Shea JE, Ngatia J, Scaife CL, Firpo MA, Mulvihill SJ (2010) Phenotype and genotype of pancreatic cancer cell lines. Pancreas 39:425–435. doi:10.1097/MPA.0b013e3181c15963

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Zhi JG, Nightingale CH, Quintilani R (1988) Microbial pharmacodynamics of pipercillin in neutropenic mice of systematic infection due to Pseudomonas aeruginosa. J Pharmacokinet Biopharm 16:355–375

    Article  PubMed  CAS  Google Scholar 

  30. Taamma A, Misset JL, Riofrio M, Guzman C, Brain E, Lopez Lazaro L, Rosing H, Jimeno JM, Cvitkovic E (2001) Phase I and pharmacokinetic study of ecteinascidin-743, a new marine compound, administered as a 24-hour continuous infusion in patients with solid tumors. J Clin Oncol 19:1256–1265

    PubMed  CAS  Google Scholar 

  31. Duxbury MS, Ito H, Zinner MJ, Ashley SW, Whang EE (2004) Inhibition of SRC tyrosine kinase impairs inherent and acquired gemcitabine resistance in human pancreatic adenocarcinoma cell. Clin Cancer Res 10:2307–2318

    Article  PubMed  CAS  Google Scholar 

  32. Simeoni M, De Nicolao G, Magni P, Rocchetti M, Poggesi I (2013) Modeling of human tumor xenografts and dose rationale in oncology. Drug Discov Today Technol 10:e365–e372. doi:10.1016/j.ddtec.2012.07.004

    Article  PubMed  Google Scholar 

  33. Del Bene F, Germani M, De Nicolao G, Magni P, Re CE, Ballinari D, Rocchetti M (2009) A model-based approach to the in vitro evaluation of anticancer activity. Cancer Chemother Pharmacol 63:827–836

    Article  PubMed  Google Scholar 

  34. Woo S, Pawaskar D, Jusko WJ (2009) Methods of utilizing baseline values for indirect response models. J Pharmacokinet Pharmacodyn 36:381–408

    Article  PubMed  PubMed Central  Google Scholar 

  35. Huang P, Plunkett W (1995) Induction of apoptosis by gemcitabine. Semin Oncol 22(4 Suppl 11):19–25

    PubMed  Google Scholar 

  36. Bergman AM, Pinedo HM, Peters GJ (2002) Determinants of resistance to 2′,2′-difluorodeoxycytidine (gemcitabine). Drug Resist Updates 5:19–33

    Article  CAS  Google Scholar 

  37. Arlt A, Gehrz A, Müerköster S, Vorndamm J, Kruse ML, Fölsch UR, Schäfer H (2003) Role of NF-kappaB and Akt/P13K in the resistance of pancreatic carcinoma cell lines against gemcitabine-induced cell death. Oncogene 22:3243–3251

    Article  PubMed  CAS  Google Scholar 

  38. Chen D, Niu M, Jiao X, Zhang K, Liang J, Zhang D (2012) Inhibition of AKT2 enhances sensitivity to gemcitabine via regulating PUMA and NF-kB signaling pathway in human pancreatic ductal adenocarcinoma. Int J Mol Sci 13:1186–1208. doi:10.3390/ijms13011186 (Epub 2012 Jan 20)

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Kagawa S, Takano S, Yoshitomi H, Kimura F, Satoh M, Shimizu H, Yoshidome H, Ohtsuka M, Kato A, Furukawa K, Matsushita K, Nomura F, Miyazaki M (2012) Akt/mTOR signaling pathway is crucial for gemcitabine resistance induced by Annexin II in pancreatic cancer cells. J Surg Res 178:758–767. doi:10.1016/j.jss.2012.05.065 (Epub 2012 Jun 12)

    Article  PubMed  CAS  Google Scholar 

  40. Karnitz LM, Flatten KS, Wagner JM, Loegering D, Hackbarth JS, Arlander SJ, Vroman BT, Thomas MB, Baek YU, Hopkins KM, Lieberman HB, Chen J, Cliby WA, Kaufmann SH (2005) Gemcitabine-induced activation of checkpoint signaling pathways that affect tumor cell survival. Mol Pharmacol 68:1636–1644

    PubMed  CAS  Google Scholar 

  41. Battaglia MA, Parker RS (2011) Pharmacokinetic/pharmacodynamic modelling of intracellular gemcitabine triphosphate accumulation: translating in vitro to in vivo. IET Syst Biol 5:34. doi:10.1049/iet-syb.2009.0073

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Wojciech Krzyzanski for valuable discussions. Trabectedin was a gift from PharmaMar. This work was supported by NIH Grants GM57980 and GM24211 to W.J.J. and CA168454 and CA198096 to R.M.S, the National Research Fund, Luxembourg, and co-funded under the Marie Curie Actions of the European Commission (FP7-COFUND).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Jusko.

Ethics declarations

Conflict of interest

No conflicts of interest are reported.

Appendix

Appendix

The following provides a proof of Eqs. (5)–(10), assuming that drug concentrations are constant during experiments. The stationary equations of the proposed PD model Eqs. (3) and (4) are as below:

$$K_{\text{d}} = \frac{{K_{\text{max,d}} C_{\text{d}}^{{\gamma_{\text{d}} }} }}{{KC_{{50,{\text{d}}}}^{{\gamma_{\text{d}} }} + C_{\text{d}}^{{\gamma_{\text{d}} }} }}$$
(11a)
$$0 = \frac{1}{{\tau_{\text{d}} }}\left( {K_{\text{d}} - K_{{1,{\text{d}}_{\text{ss}} }} } \right)$$
(11b)
$$0 = \frac{1}{{\tau_{\text{d}} }}\left( {K_{{1,{\text{d}}_{\text{ss}} }} - K_{{2,{\text{d}}_{\text{ss}} }} } \right)$$
(11c)
$$0 = \frac{1}{{\tau_{\text{d}} }}\left( {K_{{2,{\text{d}}_{\text{ss}} }} - K_{{3,{\text{d}}_{\text{ss}} }} } \right)$$
(11d)
$$0 = \frac{1}{{\tau_{\text{d}} }}\left( {K_{{3,{\text{d}}_{\text{ss}} }} - K_{{4,{\text{d}}_{\text{ss}} }} } \right)$$
(11e)
$$0 = k_{\text{g}} R_{\text{ss}}^{{\prime }} \left( {1 - \frac{{R_{\text{ss}}^{{\prime }} }}{{R_{\text{ss}} }}} \right) - \mu_{\text{ss}} R_{\text{ss}}^{{\prime }}$$
(11f)

with

$$\mu_{\text{ss}} = \left\{ \begin{array}{ll} {K_{{4,{\text{d}}_{\text{ss}} }} } &\quad {{\text{for}}\,{\text{single}}\,{\text{agent}}} \\ {K_{{4,{\text{Gem}}_{\text{ss}} }} + K_{{4,{\text{Et}}743_{\text{ss}} }} } &\quad {\text{for}}\,{\text{combination}}\end{array} \right.$$

From Eqs. (11a)–(11e) we have

$$K_{\text{d}} = K_{{1,{\text{d}}_{\text{ss}} }} = \cdots = K_{{4,{\text{d}}_{\text{ss}} }}$$

so that

$$\mu_{\text{ss}} = \left\{ {\begin{array}{ll} {\frac{{K_{{\hbox{max} ,{\text{d}}}} C_{\text{d}}^{{\gamma {\text{d}}}} }}{{KC_{{50,{\text{d}}}}^{{\gamma {\text{d}}}} + C_{\text{d}}^{{\gamma {\text{d}}}} }}} &\quad {{\text{for}}\,{\text{single}}\,{\text{agent}}} \\ {\frac{{K_{{\hbox{max} ,{\text{Gem}}}} C_{\text{Gem}}^{{\gamma {\text{Gem}}}} }}{{\left (\varphi KC_{{50,{\text{Gem}}}} \right ) ^{{\gamma {\text{Gem}}}} + C_{\text{Gem}}^{{\gamma {\text{Gem}}}} }} + \frac{{K_{{\hbox{max} ,{\text{Et}}743}} C_{{{\text{Et}}743}}^{{\gamma {\text{Et}}743}} }}{{KC_{{50,{\text{Et}}743}}^{{\gamma {\text{Et}}743}} + C_{{{\text{Et}}743}}^{{\gamma {\text{Et}}743}} }}} &\quad {{\text{for}}\,{\text{combination}}} \\ \end{array} } \right.$$
(12)

To calculate the new steady state for single-agents, we solve Eqs. (11f) and (12) with respect to \(R_{\text{ss}}^{{\prime }}\) and obtain Eq. (6). In order to achieve that the number of cells decreases for t > 0, one needs \(R_{\text{ss}}^{'} \le R_{0}\), i.e., the threshold concentration is defined via

$$R_{\text{ss}}^{{\prime }} = \left( {k_{\text{g}} - \frac{{K_{{{ \hbox{max} },{\text{d}}}} C_{\text{d}}^{{\gamma_{\text{d}} }} }}{{KC_{{50,{\text{d}}}}^{{\gamma_{\text{d}} }} + C_{\text{d}}^{{\gamma_{\text{d}} }} }}} \right)\frac{{R_{\text{ss}} }}{{k_{\text{g}} }} = R_{0}$$

which is equivalent to

$$k_{\text{g}} \left( {R_{\text{ss}} - R_{0} } \right)KC_{{50,{\text{d}}}}^{{\gamma_{\text{d}} }} + k_{\text{g}} \left( {R_{\text{ss}} - R_{0} } \right)C_{\text{d}}^{{\gamma_{\text{d}} }} = K_{\text{max,d}} C_{\text{d}}^{{\gamma_{\text{d}} }} R_{\text{ss}} .$$

This leads to

$$C_{\text{T,d}}^{{\gamma_{\text{d}} }} = \frac{{k_{\text{g}} \left( {R_{\text{ss}} - R_{0} } \right)KC_{{50,{\text{d}}}}^{{\gamma_{\text{d}} }} }}{{K_{{{ \hbox{max} },{\text{d}}}} R_{\text{ss}} - k_{\text{g}} \left( {R_{\text{ss}} - R_{0} } \right)}}$$

as Eq. (5) is shown. To obtain total cell eradication, the concentration

$$\frac{{K_{\text{max,d}} C_{\text{d}}^{{\gamma_{\text{d}} }} }}{{KC_{{50,{\text{d}}}}^{{\gamma_{\text{d}} }} + C_{\text{d}}^{{\gamma_{\text{d}} }} }} \ge k_{\text{g}}$$

is needed, i.e., C E,d is defined via

$$\frac{{K_{\text{max,d}} C_{\text{E,d}}^{{\gamma_{\text{d}} }} }}{{KC_{{50,{\text{d}}}}^{{\gamma_{\text{d}} }} + C_{\text{E,d}}^{{\gamma_{\text{d}} }} }} = k_{\text{g}}$$

resulting in Eq. (7).

For combination effects, Eqs. (11f) and (12) provide

$$\frac{{K_{{{ \hbox{max} },{\text{Gem}}}} C_{\text{Gem}}^{{\gamma_{\text{Gem}} }} }}{{\left( {\psi KC_{{50,{\text{Gem}}}}^{ } } \right)^{{\gamma_{\text{Gem}} }} + C_{\text{Gem}}^{{\gamma_{\text{Gem}} }} }} + \frac{{K_{{{ \hbox{max} },{\text{Et}}743}} C_{{{\text{Et}}743}}^{{\gamma_{{{\text{Et}}743}} }} }}{{KC_{{50,{\text{Et}}743}}^{{\gamma_{{{\text{Et}}743}} }} + C_{{{\text{Et}}743}}^{{\gamma_{{{\text{Et}}743}} }} }} = k_{\text{g}} \left( {1 - \frac{{R_{\text{ss}}^{{\prime }} }}{{R_{\text{ss}} }}} \right) .$$
(13)

and Eq. (9) is obtained.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, X., Koch, G., Straubinger, R.M. et al. Pharmacodynamic modeling of combined chemotherapeutic effects predicts synergistic activity of gemcitabine and trabectedin in pancreatic cancer cells. Cancer Chemother Pharmacol 77, 181–193 (2016). https://doi.org/10.1007/s00280-015-2907-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-015-2907-4

Keywords

Navigation