Skip to main content

Advertisement

Log in

A study to explore the correlation of ABCB1, ABCG2, OCT1 genetic polymorphisms and trough level concentration with imatinib mesylate-induced thrombocytopenia in chronic myeloid leukemia patients

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Imatinib mesylate is presently the first-line treatment for chronic myeloid leukemia (CML). Therapeutic drug monitoring (TDM) and pharmacogenetic screening is warranted for better management of imatinib therapy. The present study was framed to explore the influence of common drug transporter gene polymorphisms of ABCB1, ABCG2, OCT1 and trough level concentration on commonly occurring adverse events in CML patients treated with imatinib mesylate.

Methods

A total number of 111 patients in chronic phase (Philadelphia chromosome +ve) were included in the study. The plasma drug concentration of imatinib was estimated using LC–MS/MS method.

Results

The mean ± SD trough level concentration of imatinib mesylate was found to be 1430.7 ± 438.7 ng/ml. The trough level concentration at steady state (Cmin.ss) was significantly higher in patients with grade 2–4 thrombocytopenia compared with patients without the adverse event (P value 0.033).

Conclusion

The drug level of imatinib in plasma correlates with the severity of thrombocytopenia, which adds to the utility of TDM in the management of CML patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Druker BJ, Talpaz M, Resta DJ et al (2001) Efficacy and safety of a specific inhibitor of the BCR–ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344:1031–1037

    Article  CAS  PubMed  Google Scholar 

  2. Lakshmaiah KC, Bhise R, Purohit S et al (2012) Chronic myeloid leukemia in children and adolescents: results of treatment with imatinib mesylate. Leuk Lymphoma 53:2430–2433

    Article  CAS  PubMed  Google Scholar 

  3. Peng B, Hayes M, Resta D et al (2004) Pharmacokinetics and pharmacodynamics of imatinib in a phase I trial with chronic myeloid leukemia patients. J Clin Oncol 22:935–942

    Article  CAS  PubMed  Google Scholar 

  4. Jabbour EJ, Kantarjian H, Eliasson L et al (2012) Patient adherence to tyrosine kinase inhibitor therapy in chronic myeloid leukemia. Am J Hematol 87:687–691

    Article  PubMed  Google Scholar 

  5. Pirmohamed M (2014) Personalized pharmacogenomics: predicting efficacy and adverse drug reactions. Annu Rev Genomics Hum Genet 15:349–370

    Article  CAS  PubMed  Google Scholar 

  6. Lee JW, Aminkeng F, Bhavsar AP et al (2014) The emerging era of pharmacogenomics: current successes, future potential, and challenges. Clin Genet 86:21–28

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Mladosievicova B, Carter A, Kristova V (2007) Genetic tests for predicting the toxicity and efficacy of anticancer chemotherapy. Neoplasma 54:181–188

    CAS  PubMed  Google Scholar 

  8. Innocenti F, Undevia SD, Iyer L et al (2004) Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. J Clin Oncol 22:1382–1388

    Article  CAS  PubMed  Google Scholar 

  9. Hawwa AF, Millership JS, Collier PS et al (2008) Pharmacogenomic studies of the anticancer and immunosuppressive thiopurines mercaptopurine and azathioprine. Br J Clin Pharmacol 66:517–528

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Largillier R, Etienne-Grimaldi MC, Formento JL et al (2006) Pharmacogenetics of capecitabine in advanced breast cancer patients. Clin Cancer Res 12:5496–5502

    Article  CAS  PubMed  Google Scholar 

  11. Shibata T, Minami Y, Mitsuma A et al (2014) Association between severe toxicity of nilotinib and UGT1A1 polymorphisms in Japanese patients with chronic myelogenous leukemia. Int J Clin Oncol 19:391–396

    Article  CAS  PubMed  Google Scholar 

  12. Huang L, Baker KL, Chen M et al (2010) Pazopanib- induced hyperbilirubinemia is associated with Gilbert’s syndrome UGT1A1 polymorphism. Br J Cancer 102:1371–1377

    Article  PubMed Central  PubMed  Google Scholar 

  13. Tamura M, Kondo M, Horio M et al (2012) Genetic polymorphisms of the adenosine triphosphate-binding cassette transporters (ABCG2, ABCB1) and gefitinib toxicity. Nagoya J Med Sci 74:133–140

    CAS  PubMed  Google Scholar 

  14. Widmer N, Decosterd LA, Leyvraz S et al (2008) Relationship of imatinib-free plasma levels and target genotype with efficacy and tolerability. Br J Cancer 98:1633–1640

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Josephs DH, Fisher DS, Spicer J et al (2013) Clinical pharmacokinetics of tyrosine kinase inhibitors: implications for therapeutic drug monitoring. Ther Drug Monit 35:562–587

    CAS  PubMed  Google Scholar 

  16. Zu B, Li Y, Wang X et al (2014) MDR1 gene polymorphisms and imatinib response in chronic myeloid leukemia: a meta-analysis. Pharmacogenomics 15:667–677

    Article  CAS  PubMed  Google Scholar 

  17. Thomas J, Wang L, Clark RE et al (2004) Active transport of imatinib into and out of cells: implications for drug resistance. Blood 104:3739–3745

    Article  CAS  PubMed  Google Scholar 

  18. Dulucq S, Krajinovic M (2010) The pharmacogenetics of imatinib. Genome Med 2:85

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Di Paolo A, Polillo M, Capecchi M et al (2014) The c. 480C > G polymorphism of hOCT1 influences imatinib clearance in patients affected by chronic myeloid leukemia. Pharmacogenomics J 14:328–335

    Article  PubMed  Google Scholar 

  20. Picard S, Titier K, Etienne G et al (2007) Trough imatinib plasma levels are associated with both cytogenetic and molecular responses to standard-dose imatinib in chronic myeloid leukemia. Blood 109:3496–3499

    Article  CAS  PubMed  Google Scholar 

  21. Francis J, Dubashi B, Sundaram R et al (2014) A simple and rapid method for the quantification of Imatinib mesylate and desmethyl imatinib in human Plasma using LC–MS/MS and its application to routine Therapeutic drug monitoring. World J Pharma Res 3:1067–1075

    Google Scholar 

  22. Common Terminology Criteria for Adverse Events (CTCAE). http://evs.nci.nih.gov/ftp1/CTCAE/CTCAE_4.03_2010-06-14_QuickReference_8.5×11.pdf. Accessed 23 Aug 2013

  23. Francis J, Palaniappan M, Dubashi B, Pradhan SC, Adithan C (2015) Adverse drug reactions of imatinib therapy in chronic myeloid leukemia patients: a single-center surveillance study. J Pharmacol Pharmacother 6:30–33

    Article  PubMed Central  PubMed  Google Scholar 

  24. Umamaheswaran G, Krishna Kumar D, Kayathiri D et al (2012) Inter and intra-ethnic differences in the distribution of the molecular variants of TPMT, UGT1A1 and MDR1 genes in the South Indian population. Mol Biol Rep 39:6343–6351

    Article  CAS  PubMed  Google Scholar 

  25. Cortes JE, Egorin MJ, Guilhot F et al (2009) Pharmacokinetic/pharmacodynamic correlation and blood-level testing in imatinib therapy for chronic myeloid leukemia. Leukemia 23:1537–1544

    Article  CAS  PubMed  Google Scholar 

  26. Teng JF, Mabasa VH, Ensom MH (2012) The role of therapeutic drug monitoring of imatinib in patients with chronic myeloid leukemia and metastatic or unresectable gastrointestinal stromal tumors. Ther Drug Monit 34:85–97

    Article  CAS  PubMed  Google Scholar 

  27. Gotta V, Bouchet S, Widmer N et al (2014) Large-scale imatinib dose-concentration-effect study in CML patients under routine care conditions. Leuk Res 38:764–772

    Article  CAS  PubMed  Google Scholar 

  28. Forrest DL, Trainor S, Brinkman RR et al (2009) Cytogenetic and molecular responses to standard-dose imatinib in chronic myeloid leukemia are correlated with Sokal risk scores and duration of therapy but not trough imatinib plasma levels. Leuk Res 33:271–275

    Article  CAS  PubMed  Google Scholar 

  29. Eechoute K, Sparreboom A, Burger H et al (2011) Drug transporters and imatinib treatment: implications for clinical practice. Clin Cancer Res 17:406–415

    Article  CAS  PubMed  Google Scholar 

  30. Takahashi N, Miura M, Scott SA et al (2010) Influence of CYP3A5 and drug transporter polymorphisms on imatinib trough concentration and clinical response among patients with chronic phase chronic myeloid leukemia. J Hum Genet 55:731–737

    Article  CAS  PubMed  Google Scholar 

  31. Larson RA, Druker BJ, Guilhot F et al (2008) Imatinib pharmacokinetics and its correlation with response and safety in chronic-phase chronic myeloid leukemia: a subanalysis of the IRIS study. Blood 111:4022–4028

    Article  CAS  PubMed  Google Scholar 

  32. Arora B, Gota V, Menon H et al (2013) Therapeutic drug monitoring for imatinib: current status and Indian experience. Indian J Med Paediatr Oncol 34:224–228

    Article  PubMed Central  PubMed  Google Scholar 

  33. Kawaguchi T, Hamada A, Hirayama C et al (2009) Relationship between an effective dose of imatinib, body surface area, and trough drug levels in patients with chronic myeloid leukemia. Int J Hematol 89:642–648

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by a grant received from Science and Engineering Research Board, Government of India (SERB- SB/FT/LS-147/2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswajit Dubashi.

Ethics declarations

Conflict of interest

None declared.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Francis, J., Dubashi, B., Sundaram, R. et al. A study to explore the correlation of ABCB1, ABCG2, OCT1 genetic polymorphisms and trough level concentration with imatinib mesylate-induced thrombocytopenia in chronic myeloid leukemia patients. Cancer Chemother Pharmacol 76, 1185–1189 (2015). https://doi.org/10.1007/s00280-015-2905-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-015-2905-6

Keywords

Navigation