Skip to main content

Advertisement

Log in

Mechanism of action of ixabepilone and its interactions with the βIII-tubulin isotype

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Ixabepilone (Ixempra, BMS-247550), a semisynthetic analog of epothilone B, is a microtubule-targeted drug in clinical use for treatment of metastatic or locally advanced breast cancer. Ixabepilone’s binding and mechanism of action on microtubules and their dynamics, as well as its interactions with isotypically altered microtubules, both in vitro and in tumor cells, have not been described. Microtubules are dynamic polymers of the protein tubulin that function in mitosis, intracellular transport, cell proliferation, and migration. They continually undergo dynamic instability, periods of slow growth and rapid shortening that are crucial to these cell functions. We determined ixabepilone’s microtubule binding and polymerization effects in vitro and also determined its effects on inhibition of dynamic instability in vitro and in cells, both with and without removal of the βIII isotype of tubulin. The βIII isotype of tubulin is associated with drug resistance and tumor aggressivity. We found that removal (in vitro) and knockdown (in cells) of βIII-tubulin led to increased inhibition of microtubule dynamic instability by ixabepilone. Depletion of βIII-tubulin from MCF7 human breast cancer cells also induced increased mitotic arrest by ixabepilone. Thus, βIII-tubulin expression suppresses the antitumor effects of ixabepilone, indicating that increased βIII-tubulin may be an important contributor to the development of resistance to ixabepilone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cristofanilli M (2012) Advancements in the treatment of metastatic breast cancer (MBC): the role of ixabepilone. J Oncol 2012:703–858. doi:10.1155/2012/703858

    Article  Google Scholar 

  2. Denduluri N, Swain S (2011) Ixabepilone: clinical role in metastatic breast cancer. Clin Breast Cancer 11:139–145

    Article  CAS  PubMed  Google Scholar 

  3. Brogdon CF, Lee FY, Canetta RM (2014) Development of other microtubule-stabilizer families: the epothilones and their derivatives. Anticancer Drugs 25:599–609. doi:10.1097/CAD.0000000000000071

    Article  CAS  PubMed  Google Scholar 

  4. Liu G, Chen YH, Dipaola R, Carducci M, Wilding G (2012) Phase II trial of weekly ixabepilone in men with metastatic castrate-resistant prostate cancer (E3803): a trial of the Eastern Cooperative Oncology Group. Clin Genitourin Cancer 10:99–105. doi:10.1016/j.clgc.2012.01.009

    Article  PubMed Central  PubMed  Google Scholar 

  5. Smaglo BG, Pishvaian MJ (2014) Profile and potential of ixabepilone in the treatment of pancreatic cancer. Drug Des Dev Ther 8:923–930. doi:10.2147/DDDT.S52964

    CAS  Google Scholar 

  6. Ludueña RF (1998) Multiple forms of tubulin: different gene products and covalent modifications. Int Rev Cytol 178:207–275

    Article  PubMed  Google Scholar 

  7. Khrapunovich-Baine M, Menon V, Yang CP, Northcote PT, Miller JH, Angeletti RH et al (2011) Hallmarks of molecular action of microtubule stabilizing agents: effects of epothilone B, ixabepilone, peloruside A, and laulimalide on microtubule conformation. J Biol Chem 286:11765–11778. doi:10.1074/jbc.M110.162214

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Lee FY, Borzilleri R, Fairchild CR, Kim SH, Long BH, Reventos-Suarez C et al (2001) BMS-247550: a novel epothilone analog with a mode of action similar to paclitaxel but possessing superior anti-tumor efficacy. Clin Cancer Res 7:1429–1437

    CAS  PubMed  Google Scholar 

  9. Dumontet C, Jordan MA, Lee FF (2009) Ixabepilone: targeting betaIII-tubulin expression in taxane-resistant malignancies. Mol Cancer Ther 8:17–25

    Article  CAS  PubMed  Google Scholar 

  10. Mitchison T, Kirschner M (1984) Dynamic instability of microtubule growth. Nature 312:237–242. doi:10.1038/312237a0

    Article  CAS  PubMed  Google Scholar 

  11. Lopus M, Yenjerla M, Wilson L (2008) Microtubule dynamics. In: Begley TP (ed) Wiley encyclopedia of chemical biology, 3rd edn. Wiley, NJ, pp 153–160

    Google Scholar 

  12. Field JJ, Kanakkanthara A, Miller JH (2014) Microtubule-targeting agents are clinically successful due to both mitotic and interphase impairment of microtubule function. Bioorg Med Chem 22:5050–5059. doi:10.1016/j.bmc.2014.02.035

    Article  CAS  PubMed  Google Scholar 

  13. Kamath K, Smiyun G, Wilson L, Jordan MA (2014) Mechanisms of inhibition of endothelial cell migration by taxanes. Cytoskeleton 71:46–60. doi:10.1002/cm.21153

    Article  CAS  PubMed  Google Scholar 

  14. Lee FY, Covello KL, Castaneda S, Hawken DR, Kan D, Lewin A et al (2008) Synergistic antitumor activity of ixabepilone (BMS-247550) plus bevacizumab in multiple in vivo tumor models. Clin Cancer Res 14(24):8123–8131

    Article  CAS  PubMed  Google Scholar 

  15. Narvi E, Jaakkola K, Winsel S, Oetken-Lindholm C, Halonen P, Kallio L et al (2013) Altered TUBB3 expression contributes to the epothilone response of mitotic cells. Br J Cancer 108:82–90. doi:10.1038/bjc.2012.553

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. McCarroll JA, Gan PP, Liu M, Kavallaris M (2010) betaIII-tubulin is a multifunctional protein involved in drug sensitivity and tumorigenesis in non-small cell lung cancer. Cancer Res 270:4995–5003. doi:10.1158/0008-5472

    Article  Google Scholar 

  17. Miller HP, Wilson L (2010) Preparation of microtubule protein and purified tubulin from bovine brain by cycles of assembly and disassembly and phosphocellulose chromatography. Methods Cell Biol 95:3–15. doi:10.1016/S0091-679X(10)95001-2

    CAS  PubMed  Google Scholar 

  18. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  19. Lopus M, Oroudjev E, Wilson L, Wilhelm S, Widdison W, Chari R et al (2010) Maytansine and cellular metabolites of antibody-maytansinoid conjugates strongly suppress microtubule dynamics by binding to microtubules. Mol Cancer Ther 9:2689–2699. doi:10.1158/1535-7163.MCT-10-0644

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Yenjerla M, Lopus M, Wilson L (2010) Analysis of dynamic instability of steady-state microtubules in vitro by video-enhanced differential interference contrast microscopy with an appendix by Emin Oroudjev. Methods Cell Biol 95:189–206. doi:10.1016/S0091-679X(10)95011-5

    Article  CAS  PubMed  Google Scholar 

  21. Walker RA, O’Brien ET, Pryer NK, Soboeiro MF, Voter WA, Erickson HP et al (1988) Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies. J Cell Biol 107:1437–1448

    Article  CAS  PubMed  Google Scholar 

  22. Lopus M, Manatschal C, Buey RM, Bjelic S, Steinmetz MO, Miller HP et al (2012) Cooperative stabilization of microtubule dynamics by EB1 and CLIP-170 involves displacement of stably-bound P(i) at microtubule ends. Biochemistry 51(14):3021–3030. doi:10.1021/bi300038t

    Article  CAS  PubMed  Google Scholar 

  23. Azarenko O, Smiyun G, Mah J, Wilson L, Jordan MAJ (2014) Antiproliferative mechanism of action of the novel taxane cabazitaxel as compared with the parent compound docetaxel in MCF7 breast cancer cells. Mol Cancer Ther 13:2092–2103. doi:10.1158/1535-7163.MCT-14-0265

    Article  CAS  PubMed  Google Scholar 

  24. Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D et al (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 82:1107–1112

    Article  CAS  PubMed  Google Scholar 

  25. Oroudjev E, Lopus M, Wilson L, Audette C, Provenzano C, Erickson H et al (2010) Maytansinoid-antibody conjugates induce mitotic arrest by suppressing microtubule dynamic instability. Mol Cancer Ther 9:2700–2713. doi:10.1158/1535-7163.MCT-10-0645

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Kanakkanthara A, Northcote PT, Miller JH (2012) βII-tubulin and βIII-tubulin mediate sensitivity to peloruside A and laulimalide, but not paclitaxel or vinblastine, in human ovarian carcinoma cells. Mol Cancer Ther 11(2):393–404. doi:10.1158/1535-7163.MCT-11-0614

    Article  CAS  PubMed  Google Scholar 

  27. Kamath K, Wilson L, Cabral F, Jordan MA (2005) ΒetaIII-tubulin induces paclitaxel resistance in association with reduced effects on microtubule dynamic instability. J Biol Chem 280:12902–12907

    Article  CAS  PubMed  Google Scholar 

  28. Hiser L, Aggarwal A, Young R, Frankfurter A, Spano A, Correia JJ, Lobert S (2006) Comparison of beta-tubulin mRNA and protein levels in 12 human cancer cell lines. Cell Motil Cytoskelet 63:41–52

    Article  CAS  Google Scholar 

  29. Kamath K, Jordan MA (2003) Suppression of microtubule dynamics by epothilone B is associated with mitotic arrest. Cancer Res 63:6026–6031

    CAS  PubMed  Google Scholar 

  30. Goncalves A, Braguer D, Kamath K, Martello L, Briand C, Horwitz S et al (2001) Resistance to Paclitaxel in lung cancer cells associated with increased microtubule dynamics. Proc Natl Acad Sci USA 98(20):11737–11741

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Martello LA, Verdier-Pinard P, He L, Torres K, Orr GA, Horwitz SB (2003) Elevated levels of microtubule destabilizing factors in a Paclitaxel-resistant/dependent A549 cell line with an alpha-tubulin mutation. Cancer Res 63:1207–1213

    CAS  PubMed  Google Scholar 

  32. Derry WB, Wilson L, Khan IA, Luduena RF, Jordan MA (1997) Paclitaxel differentially modulates the dynamics of microtubules assembled from unfractionated and purified beta-tubulin isotypes. Biochemistry 36:3554–3562

    Article  CAS  PubMed  Google Scholar 

  33. Gan PP, Pasquier E, Kavallaris M (2007) Class III beta-tubulin mediates sensitivity to chemotherapeutic drugs in non-small cell lung cancer. Cancer Res 67:9356–9363

    Article  CAS  PubMed  Google Scholar 

  34. Laing N, Dahllöf B, Hartley-Asp B, Ranganathan S, Tew KD (1997) Interaction of estramustine with tubulin isotypes. Biochemistry 36:871–878

    Article  CAS  PubMed  Google Scholar 

  35. Stengel C, Newman SP, Leese MP, Potter BV, Reed MJ, Purohit A (2010) Class III beta-tubulin expression and in vitro resistance to microtubule targeting agents. Br J Cancer 102(2):316–324. doi:10.1038/sj.bjc.6605489

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Janke C (2014) The tubulin code: molecular components, readout mechanisms, and functions. J Cell Biol 206:461–472

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Löwe J, Li H, Downing KH, Nogales E (2001) Refined structure of alpha beta-tubulin at 3.5 A resolution. J Mol Biol 313:1045–1057

    Article  PubMed  Google Scholar 

  38. Das L, Bhattacharya B, Basu G (2012) Rationalization of paclitaxel insensitivity of yeast β-tubulin and human βIII-tubulin isotype using principal component analysis. BMC Res Notes 5:395. doi:10.1186/1756-0500-5-395

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Nettles JH, Li H, Cornett B, Krahn JM, Snyder JP, Downing KH (2004) The binding mode of epothilone A on alpha, beta-tubulin by electron crystallography. Science 305(5685):866–869

    Article  CAS  PubMed  Google Scholar 

  40. Lu Q, Luduena RF (1994) In vitro analysis of microtubule assembly of isotypically pure tubulin dimers. Intrinsic differences in the assembly properties of alpha beta II, alpha beta III, and alpha beta IV tubulin dimers in the absence of microtubule-associated proteins. J Biol Chem 269:2041–2047

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Bristol-Myers Squibb for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Ann Jordan.

Ethics declarations

Conflict of interest

The authors disclose no potential conflicts of interest. All authors were supported by a grant from Bristol-Myers Squibb.

Additional information

Manu Lopus and Greg Smiyun have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopus, M., Smiyun, G., Miller, H. et al. Mechanism of action of ixabepilone and its interactions with the βIII-tubulin isotype. Cancer Chemother Pharmacol 76, 1013–1024 (2015). https://doi.org/10.1007/s00280-015-2863-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-015-2863-z

Keywords

Navigation