DNA intercalative 4-butylaminopyrimido[4′,5′:4,5]thieno(2,3-b)quinoline induces cell cycle arrest and apoptosis in leukemia cells



DNA intercalators are one of the interesting groups in cancer chemotherapy. The development of novel anticancer small molecule has gained remarkable interest over the last decade. In this study, we synthesized and investigated the ability of a tetracyclic-condensed quinoline compound, 4-butylaminopyrimido[4′,5′:4,5]thieno(2,3-b)quinoline (BPTQ), to interact with double-stranded DNA and inhibit cancer cell proliferation.


Circular dichroism, topological studies, molecular docking, absorbance, and fluorescence spectral titrations were employed to study the interaction of BPTQ with DNA. Cytotoxicity was studied by performing 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assay. Further, cell cycle analysis by flow cytometry, annexin V staining, mitochondrial membrane potential assay, DNA fragmentation, and western blot analysis were used to elucidate the mechanism of action of BPTQ at the cellular level.


Spectral, topological, and docking studies confirmed that BPTQ is a typical intercalator of DNA. BPTQ induces dose-dependent inhibitory effect on the proliferation of cancer cells by arresting cells at S and G2/M phase. Further, BPTQ activates the mitochondria-mediated apoptosis pathway, as explicated by a decrease in mitochondrial membrane potential, increase in the Bax:Bcl-2 ratio, and activation of caspases.


These results confirmed that BPTQ is a DNA intercalative anticancer molecule, which could aid in the development of future cancer therapeutic agents.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Sadikovic B, Al-Romaih K, Squire JA, Zielenska M (2008) Cause and consequences of genetic and epigenetic alterations in human cancer. Curr Genomics 9:394–408

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. 2.

    Robison K (2010) Application of second-generation sequencing to cancer genomics. Brief Bioinform 11:524–534

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Shahabuddin MS, Nambiar M, Choudhary B, Advirao GM, Raghavan SC (2010) A novel DNA intercalator, butylamino-pyrimido[4′,5′:4,5]selenolo(2,3-b)quinoline, induces cell cycle arrest and apoptosis in leukemic cells. Invest New Drugs 28:35–48

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Kastan MB, Bartek J (2004) Cell-cycle checkpoints and cancer. Nature 432:316–323

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Hurley LH (2002) DNA and its associated processes as targets for cancer therapy. Nat Rev Cancer 2:188–200

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Martínez R, Chacón-García L (2005) The search of DNA-intercalators as antitumoral drugs: what it worked and what did not work. Curr Med Chem 12:127–151

    Article  PubMed  Google Scholar 

  7. 7.

    Thurston DE (1999) Nucleic acid targeting: therapeutic strategies for the 21st century. Br J Cancer 80:65–85

    CAS  PubMed  Google Scholar 

  8. 8.

    Li S, Cooper VR, Thonhauser T, Lundqvist BI, Langreth DC (2009) Stacking interactions and DNA intercalation. J Phys Chem B 113:11166–11172

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Nitiss JL (2009) Targeting DNA topoisomerase II in cancer chemotherapy. Nat Rev Cancer 9:338–350

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. 10.

    Park E-J, Kwon H-K, Choi Y-M, Shin H-J, Choi S (2012) Doxorubicin induces cytotoxicity through upregulation of perk-dependent ATF3. PLoS One 7:e44990

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. 11.

    Khan SN, Lal SK, Kumar P, Khan AU (2010) Effect of mitoxantrone on proliferation dynamics and cell-cycle progression. Biosci Rep 30:375–381

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Kuo P-L, Hsu Y-L, Chang C-H, Lin C-C (2005) The mechanism of ellipticine-induced apoptosis and cell cycle arrest in human breast MCF-7 cancer cells. Cancer Lett 223:293–301

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Lafayette EA, Vitalino de Almeida SM, Pitta MGDR, Carneiro Beltrão EI, da Silva TG, Olímpio de Moura R, Pitta IDR, de Carvalho LB, de Lima MDCA (2013) Synthesis, DNA binding and topoisomerase I inhibition activity of thiazacridine and imidazacridine derivatives. Molecules 18:15035–15050

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Seo J, Lee HS, Lee M, Kim M, Shin C-G (2004) DA-125, a new antitumor agent, inhibits topoisomerase II as topoisomerase poison and DNA intercalator simultaneously. Arch Pharm Res 27:77–82

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Prajapati SM, Patel KD, Vekariya RH, Panchal SN, Patel HD (2014) Recent advances in the synthesis of quinolines: a review. RSC Adv 4:24463–24476

    Article  CAS  Google Scholar 

  16. 16.

    Solomon VR, Lee H (2011) Quinoline as a privileged scaffold in cancer drug discovery. Curr Med Chem 18:1488–1508

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Shenoy S, Vasania VS, Gopal M, Mehta A (2007) 8-Methyl-4-(3-diethylaminopropylamino) pyrimido [4′,5′;4,5] thieno (2,3-b) quinoline (MDPTQ), a quinoline derivate that causes ROS-mediated apoptosis in leukemia cell lines. Toxicol Appl Pharmacol 222:80–88

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    Shahabuddin MS, Gopal M, Raghavan SC (2009) Intercalating, cytotoxic, antitumour activity of 8-chloro and 4-morpholinopyrimido [4′,5′:4,5]thieno(2,3-b)quinolines. J Photochem Photobiol B 94:13–19

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Gopal M, Shenoy S, Doddamani L (2003) Antitumor activity of 4-amino and 8-methyl-4-(3diethylamino propylamino)pyrimido[4′,5′:4,5]thieno (2,3-b) quinolines. J Photochem Photobiol B Biol 72:69–78

    Article  CAS  Google Scholar 

  20. 20.

    Ren J, Chaires JB (1999) Sequence and structural selectivity of nucleic acid binding ligands. Biochemistry 38:16067–16075

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Raj TT, Ambekar SY (1988) Synthesis of 4-amino pyrimido [4′,5′:4,5] thieno (2,3-b) quinolines. J Chem Eng Data 33:530–531

    Article  CAS  Google Scholar 

  22. 22.

    Benesi HA, Hildebrand JH (1949) A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J Am Chem Soc 71:2703–2707

    Article  CAS  Google Scholar 

  23. 23.

    Huo D, Yang L, Hou C, Fa H, Luo X, Lu Y, Zheng X, Yang J, Yang L (2009) Molecular interactions of monosulfonate tetraphenylporphyrin (TPPS1) and meso-tetra(4-sulfonatophenyl)porphyrin (TPPS) with dimethyl methylphosphonate (DMMP). Spectrochim Acta A Mol Biomol Spectrosc 74:336–343

    Article  PubMed  Google Scholar 

  24. 24.

    Cao Y, He XW (1998) Studies of interaction between safranine T and double helix DNA by spectral methods. Spectrochim Acta A Mol Biomol Spectrosc 54A:883–892

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Tu LC, Chen C-S, Hsiao I-C, Chern J-W, Lin C-H, Shen Y-C, Yeh SF (2005) The beta-carboline analog Mana-Hox causes mitotic aberration by interacting with DNA. Chem Biol 12:1317–1324

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    Canals A, Purciolas M, Aymamí J, Coll M (2005) The anticancer agent ellipticine unwinds DNA by intercalative binding in an orientation parallel to base pairs. Acta Crystallogr D Biol Crystallogr 61:1009–1012

    Article  PubMed  Google Scholar 

  27. 27.

    Ritchie DW, Kemp GJ (2000) Protein docking using spherical polar Fourier correlations. Proteins 39:178–194

    Article  CAS  PubMed  Google Scholar 

  28. 28.

    Hegde M, Karki SS, Thomas E, Kumar S, Panjamurthy K, Ranganatha SR, Rangappa KS, Choudhary B, Raghavan SC (2012) Novel levamisole derivative induces extrinsic pathway of apoptosis in cancer cells and inhibits tumor progression in mice. PLoS One 7:e43632

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. 29.

    Kavitha CV, Nambiar M, Ananda Kumar CS, Choudhary B, Muniyappa K, Rangappa KS, Raghavan SC (2009) Novel derivatives of spirohydantoin induce growth inhibition followed by apoptosis in leukemia cells. Biochem Pharmacol 77:348–363

    Article  CAS  PubMed  Google Scholar 

  30. 30.

    Zhou N, Xiao H, Li T-K, Nur-E-Kamal A, Liu LF (2003) DNA damage-mediated apoptosis induced by selenium compounds. J Biol Chem 278:29532–29537

    Article  CAS  PubMed  Google Scholar 

  31. 31.

    Srivastava M, Nambiar M, Sharma S, Karki SS, Goldsmith G, Hegde M, Kumar S, Pandey M, Singh RK, Ray P, Natarajan R, Kelkar M, De A, Choudhary B, Raghavan SC (2012) An inhibitor of nonhomologous end-joining abrogates double-strand break repair and impedes cancer progression. Cell 151:1474–1487

    Article  CAS  PubMed  Google Scholar 

  32. 32.

    Zhou C, Wu Y, Yang P (2010) Synthesis, characterization, and studies on DNA binding of the complex Fe(Sal2dienNO3, H2O). Biochem (Mosc) 75:505–512

    Article  CAS  Google Scholar 

  33. 33.

    Garrett RH, Grisham CM (2010) Biochemistry. Cengage Learning, Boston

    Google Scholar 

  34. 34.

    Piantanida I, Palm BS, Zinić M, Schneider H-J (2001) A new 4,9-diazapyrenium intercalator for single- and double-stranded nucleic acids: distinct differences from related diazapyrenium compounds and ethidium bromide. J Chem Soc Perkin Trans 2:1808–1816

    Article  Google Scholar 

  35. 35.

    Amutha R, Subramanian V, Nair BU (2001) Interaction of benzidine with DNA: experimental and modelling studies. Chem Phys Lett 344:40–48

    Article  CAS  Google Scholar 

  36. 36.

    Penninger JM, Kroemer G (2003) Mitochondria, AIF and caspases—rivaling for cell death execution. Nat Cell Biol 5:97–99

    Article  CAS  PubMed  Google Scholar 

  37. 37.

    Yip KW, Reed JC (2008) Bcl-2 family proteins and cancer. Oncogene 27:6398–6406

    Article  CAS  PubMed  Google Scholar 

  38. 38.

    Kohn KW, Waring MJ, Glaubiger D, Friedman CA (1975) Intercalative binding of ellipticine to DNA. Cancer Res 35:71–76

    CAS  PubMed  Google Scholar 

  39. 39.

    Lo Y-S, Tseng W-H, Chuang C-Y, Hou M-H (2013) The structural basis of actinomycin D-binding induces nucleotide flipping out, a sharp bend and a left-handed twist in CGG triplet repeats. Nucleic Acids Res 41:4284–4294

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. 40.

    Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776

    Article  CAS  PubMed  Google Scholar 

  41. 41.

    Gavrilescu LC, Denkers EY (2003) Apoptosis and the balance of homeostatic and pathologic responses to protozoan infection. Infect Immun 71:6109–6115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. 42.

    Cheah YH, Nordin FJ, Sarip R, Tee TT, Azimahtol HLP, Sirat HM, Rashid BAA, Abdullah NR, Ismail Z (2009) Combined xanthorrhizol-curcumin exhibits synergistic growth inhibitory activity via apoptosis induction in human breast cancer cells MDA-MB-231. Cancer Cell Int 9:1

    Article  PubMed Central  PubMed  Google Scholar 

  43. 43.

    Fleischer A, Ghadiri A, Dessauge F, Duhamel M, Rebollo MP, Alvarez-Franco F, Rebollo A (2006) Modulating apoptosis as a target for effective therapy. Mol Immunol 43:1065–1079

    Article  CAS  PubMed  Google Scholar 

  44. 44.

    Ralph RK, Marshall B, Darkin S (1982) Anti-cancer drugs which intercalate into DNA: how do they act? Trends Biochem Sci 8:212–214

    Article  Google Scholar 

  45. 45.

    Wu MH, Yung BY (1994) Cell cycle phase-dependent cytotoxicity of actinomycin D in HeLa cells. Eur J Pharmacol 270:203–212

    CAS  PubMed  Google Scholar 

  46. 46.

    Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163

    Article  CAS  PubMed  Google Scholar 

  47. 47.

    Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281:1312–1316

    Article  CAS  PubMed  Google Scholar 

Download references


This work was supported by grant BT/PR10513/BRB/10/618/2008 to G. M. A. from Department of Biotechnology (DBT), Ministry of Science and Technology, Government of India (New Delhi). We are grateful to S. R. Inamdar for providing critical reagents; K. S. Rachana and M. S. Manu for critical reading; and P. Kondaiah, H. N. Kiran Kumar, and members of S. C. R. laboratory for help. FACS and confocal facilities of IISc, and FACS facility of C-CAMP, NCBS are also acknowledged. H. G. R was supported by DBT (India). We also thank Chethan Kumar for his assistance in docking studies.

Conflict of interest

The authors declare no conflicts of interest.

Author information



Corresponding author

Correspondence to Gopal M. Advi Rao.

Electronic supplementary material

Below is the link to the electronic supplementary material.


Supplementary material 1 (DOCX 343 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

RohitKumar, H.G., Asha, K.R., Raghavan, S.C. et al. DNA intercalative 4-butylaminopyrimido[4′,5′:4,5]thieno(2,3-b)quinoline induces cell cycle arrest and apoptosis in leukemia cells. Cancer Chemother Pharmacol 75, 1121–1133 (2015). https://doi.org/10.1007/s00280-015-2735-6

Download citation


  • DNA intercalators
  • Chemotherapy
  • Apoptosis
  • Leukemia