Skip to main content

Advertisement

Log in

Population pharmacokinetic/dynamic model of lymphosuppression after fludarabine administration

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Quantitative relationships between 9-β-d-arabinofuranosyl-2-fluoroadenine (F-ara-A) concentrations and lymphosuppression have not been reported, but would be useful for regimen design. A population pharmacokinetic/pharmacodynamic model was constructed in this study using data from 41 hematopoietic cell transplant (HCT) recipients conditioned with busulfan in combination with fludarabine (total dose 120 mg/m2, Protocol 1519) or with fludarabine (total dose 250 mg/m2) with rabbit antithymocyte globulin (rATG, Protocol 2041).

Methods

Individual pharmacokinetic parameters were fixed to post hoc Bayesian estimates, and circulating absolute lymphocyte counts (ALC) were obtained during the 3 weeks prior to graft infusion. A semi-physiological cell-kill model with three lymphocyte transit compartments was applied and aptly characterized the time course of suppression of circulating ALC by fludarabine administration. Drug- and system-specific parameters were estimated using a maximum likelihood expectation maximization algorithm, and the final model was qualified using an internal visual predictive check.

Results

The final model successfully characterized the time course and variability in ALC. Pharmacodynamic parameters exhibited considerable between subject variability (38.9–211 %). The HCT protocol was the only covariate associated with the pharmacodynamic parameters, specifically the lymphocyte kill rate, the transit rate between lymphocyte compartments, and the baseline ALC.

Conclusions

This model can be used to simulate the degree of lymphosuppression for design of future fludarabine-based conditioning regimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Deeg HJ, Maris MB, Scott BL, Warren EH (2006) Optimization of allogeneic transplant conditioning: not the time for dogma. Leukemia 20(10):1701–1705

    Article  CAS  PubMed  Google Scholar 

  2. Bredeson CN, Zhang MJ, Agovi MA, Bacigalupo A, Bahlis NJ, Ballen K, Brown C, Chaudhry MA, Horowitz MM, Kurian S, Quinlan D, Muehlenbien CE, Russell JA, Savoie L, Rizzo JD, Stewart DA (2008) Outcomes following HSCT using fludarabine, busulfan, and thymoglobulin: a matched comparison to allogeneic transplants conditioned with busulfan and cyclophosphamide. Biol Blood Marrow Transplant 14(9):993–1003. doi:10.1016/j.bbmt.2008.06.009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Andersson BS, de Lima M, Thall PF, Wang X, Couriel D, Korbling M, Roberson S, Giralt S, Pierre B, Russell JA, Shpall EJ, Jones RB, Champlin RE (2008) Once daily i.v. busulfan and fludarabine (i.v. Bu-Flu) compares favorably with i.v. busulfan and cyclophosphamide (i.v. BuCy2) as pretransplant conditioning therapy in AML/MDS. Biol Blood Marrow Transplant 14(6):672–684

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Lee JH, Joo YD, Kim H, Ryoo HM, Kim MK, Lee GW, Lee JH, Lee WS, Park JH, Bae SH, Hyun MS, Kim DY, Kim SD, Min YJ, Lee KH (2013) Randomized trial of myeloablative conditioning regimens: busulfan plus cyclophosphamide versus busulfan plus fludarabine. J Clin Oncol 31(6):701–709. doi:10.1200/JCO.2011.40.2362

    Article  CAS  PubMed  Google Scholar 

  5. Danhauser L, Plunkett W, Liliemark J, Gandhi V, Iacoboni S, Keating M (1987) Comparison between the plasma and intracellular pharmacology of 1-beta-D-arabinofuranosylcytosine and 9-beta-D-arabinofuranosyl-2-fluoroadenine 5′-monophosphate in patients with relapsed leukemia. Leukemia 1(9):638–643

    CAS  PubMed  Google Scholar 

  6. Gandhi V, Plunkett W (2002) Cellular and clinical pharmacology of fludarabine. Clin Pharmacokinet 41(2):93–103

    Article  CAS  PubMed  Google Scholar 

  7. Robak T, Lech-Maranda E, Korycka A, Robak E (2006) Purine nucleoside analogs as immunosuppressive and antineoplastic agents: mechanism of action and clinical activity. Curr Med Chem 13(26):3165–3189

    Article  CAS  PubMed  Google Scholar 

  8. Kalhorn TF, Ren AG, Slattery JT, McCune JS, Wang J (2005) A highly sensitive high-performance liquid chromatography-mass spectrometry method for quantification of fludarabine triphosphate in leukemic cells. J Chromatogr B Analyt Technol Biomed Life Sci 820(2):243–250

    Article  CAS  PubMed  Google Scholar 

  9. Bornhauser M, Storer B, Slattery JT, Appelbaum FR, Deeg HJ, Hansen J, Martin PJ, McDonald GB, Nichols WG, Radich J, Woolfrey A, Jenke A, Schleyer E, Thiede C, Ehninger G, Anasetti C (2003) Conditioning with fludarabine and targeted busulfan for transplantation of allogeneic hematopoietic stem cells. Blood 102(3):820–826

    Article  PubMed  Google Scholar 

  10. Long-Boyle JR, Green KG, Brunstein CG, Cao Q, Rogosheske J, Weisdorf DJ, Miller JS, Wagner JE, McGlave PB, Jacobson PA (2011) High fludarabine exposure and relationship with treatment-related mortality after nonmyeloablative hematopoietic cell transplantation. Bone Marrow Transplant 46(1):20–26. doi:10.1038/bmt.2010.53

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Salinger DH, Blough DK, Vicini P, Anasetti C, O’Donnell PV, Sandmaier BM, McCune JS (2009) A limited sampling schedule to estimate individual pharmacokinetic parameters of fludarabine in hematopoietic cell transplant patients. Clin Cancer Res 15(16):5280–5287. doi:10.1158/1078-0432.CCR-09-0427

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Woodahl EL, Wang J, Heimfeld S, Sandmaier BM, O’Donnell PV, Phillips B, Risler L, Blough DK, McCune JS (2009) A novel phenotypic method to determine fludarabine triphosphate accumulation in T-lymphocytes from hematopoietic cell transplantation patients. Cancer Chemother Pharmacol 63(3):391–401 Epub 2008 Apr 2009

    Article  CAS  PubMed  Google Scholar 

  13. McCune JS, Woodahl EL, Furlong T, Storer B, Wang J, Heimfeld S, Deeg HJ, O’Donnell PV (2012) A pilot pharmacologic biomarker study of busulfan and fludarabine in hematopoietic cell transplant recipients. Cancer Chemother Pharmacol 69(1):263–272. doi:10.1007/s00280-011-1736-3

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. McCune JS, Holmberg LA (2009) Busulfan in hematopoietic stem cell transplant setting. Expert Opin Drug Metab Toxicol 5(8):957–969. doi:10.1517/17425250903107764

    Article  CAS  PubMed  Google Scholar 

  15. Holford NHG (2005) The visual predictive check—superiority to standard diagnostic (Rorschach) plots. Abstracts of the annual meeting of the population approach group in Europe (PAGE) 14:Abstr 738. http://www.page-meeting.org/?abstract=738

  16. Friberg LE, Freijs A, Sandstrom M, Karlsson MO (2000) Semiphysiological model for the time course of leukocytes after varying schedules of 5-fluorouracil in rats. J Pharmacol Exp Ther 295(2):734–740

    CAS  PubMed  Google Scholar 

  17. Cheson BD (1995) Infectious and immunosuppressive complications of purine analog therapy. J Clin Oncol 13(9):2431–2448

    CAS  PubMed  Google Scholar 

  18. Boumpas DT, Tassiulas IO, Fleisher TA, Vaughan E, Piscitelli S, Kim Y, Pucino F, Balow JE, Austin HA (1999) A pilot study of low-dose fludarabine in membranous nephropathy refractory to therapy. Clin Nephrol 52(2):67–75

    CAS  PubMed  Google Scholar 

  19. Sandoval A, Consoli U, Plunkett W (1996) Fludarabine-mediated inhibition of nucleotide excision repair induces apoptosis in quiescent human lymphocytes. Clin Cancer Res 2(10):1731–1741

    CAS  PubMed  Google Scholar 

  20. Plunkett W, Gandhi V, Huang P, Robertson LE, Yang LY, Gregoire V, Estey E, Keating MJ (1993) Fludarabine: pharmacokinetics, mechanisms of action, and rationales for combination therapies. Semin Oncol 20(5 Suppl 7):2–12

    CAS  PubMed  Google Scholar 

  21. Gamberale R, Galmarini CM, Fernandez-Calotti P, Jordheim L, Sanchez-Avalos J, Dumontet C, Geffner J, Giordano M (2003) In vitro susceptibility of CD4+ and CD8+ T cell subsets to fludarabine. Biochem Pharmacol 66(11):2185–2191

    Article  CAS  PubMed  Google Scholar 

  22. Woodahl EL, Wang J, Heimfeld S, Sandmaier BM, McCune JS (2009) Intracellular disposition of fludarabine triphosphate in human natural killer cells. Cancer Chemother Pharmacol 63(5):959–964

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Schmitt A, Gladieff L, Laffont CM, Evrard A, Boyer JC, Lansiaux A, Bobin-Dubigeon C, Etienne-Grimaldi MC, Boisdron-Celle M, Mousseau M, Pinguet F, Floquet A, Billaud EM, Durdux C, Le Guellec C, Mazieres J, Lafont T, Ollivier F, Concordet D, Chatelut E (2010) Factors for hematopoietic toxicity of carboplatin: refining the targeting of carboplatin systemic exposure. J Clin Oncol 28(30):4568–4574. doi:10.1200/JCO.2010.29.3597

    Article  CAS  PubMed  Google Scholar 

  24. Wallin JE, Friberg LE, Karlsson MO (2009) A tool for neutrophil guided dose adaptation in chemotherapy. Comput Methods Programs Biomed 93(3):283–291

    Article  PubMed  Google Scholar 

  25. Bleyzac N, Souillet G, Magron P, Janoly A, Martin P, Bertrand Y, Galambrun C, Dai Q, Maire P, Jelliffe RW, Aulagner G (2001) Improved clinical outcome of paediatric bone marrow recipients using a test dose and Bayesian pharmacokinetic individualization of busulfan dosage regimens. Bone Marrow Transplant 28(8):743–751. doi:10.1038/sj.bmt.1703207

    Article  CAS  PubMed  Google Scholar 

  26. McCune JS, Batchelder A, Guthrie KA, Witherspoon R, Appelbaum FR, Phillips B, Vicini P, Salinger DH, McDonald GB (2009) Personalized dosing of cyclophosphamide in the total body irradiation-cyclophosphamide conditioning regimen: a phase II trial in patients with hematologic malignancy. Clin Pharmacol Ther 85(6):615–622

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Kolb HJ, Storb R, Weiden PL, Ochs HD, Kolb H, Graham TC, Floersheim GL, Thomas ED (1974) Immunologic, toxicologic and marrow transplantation studies in dogs given dimethyl myleran. Biomedicine 20(5):341–351

    CAS  PubMed  Google Scholar 

  28. Santos GW, Tutschka PJ (1974) Marrow transplantation in the busulfan-treated rat: preclinical model of aplastic anemia. J Natl Cancer Inst 53(6):1781–1785

    CAS  PubMed  Google Scholar 

  29. Theurich S, Fischmann H, Shimabukuro-Vornhagen A, Chemnitz JM, Holtick U, Scheid C, Skoetz N, von Bergwelt-Baildon M (2012) Polyclonal anti-thymocyte globulins for the prophylaxis of graft-versus-host disease after allogeneic stem cell or bone marrow transplantation in adults. Cochrane Database Syst Rev 9:CD009159. doi:10.1002/14651858.CD009159.pub2

  30. Ballen KK (2014) ATG for cord blood transplant: yes or no? Blood 123(1):7–8. doi:10.1182/blood-2013-11-537001

    Article  CAS  PubMed  Google Scholar 

  31. Waller EK, Langston AA, Lonial S, Cherry J, Somani J, Allen AJ, Rosenthal H, Redei I (2003) Pharmacokinetics and pharmacodynamics of anti-thymocyte globulin in recipients of partially HLA-matched blood hematopoietic progenitor cell transplantation. Biol Blood Marrow Transplant 9(7):460–471

    Article  CAS  PubMed  Google Scholar 

  32. Seymour L, Eisenhauer E (2001) A review of dose-limiting events in phase I trials: antimetabolites show unpredictable relationships between dose and toxicity. Cancer Chemother Pharmacol 47(1):2–10

    Article  CAS  PubMed  Google Scholar 

  33. Le Blanc K, Barrett AJ, Schaffer M, Hagglund H, Ljungman P, Ringden O, Remberger M (2009) Lymphocyte recovery is a major determinant of outcome after matched unrelated myeloablative transplantation for myelogenous malignancies. Biol Blood Marrow Transplant 15(9):1108–1115

    Article  PubMed Central  PubMed  Google Scholar 

  34. Powles R, Singhal S, Treleaven J, Kulkarni S, Horton C, Mehta J (1998) Identification of patients who may benefit from prophylactic immunotherapy after bone marrow transplantation for acute myeloid leukemia on the basis of lymphocyte recovery early after transplantation. Blood 91(9):3481–3486

    CAS  PubMed  Google Scholar 

  35. Kim DH, Kim JG, Sohn SK, Sung WJ, Suh JS, Lee KS, Lee KB (2004) Clinical impact of early absolute lymphocyte count after allogeneic stem cell transplantation. Br J Haematol 125(2):217–224

    Article  PubMed  Google Scholar 

  36. Kumar S, Chen MG, Gastineau DA, Gertz MA, Inwards DJ, Lacy MQ, Tefferi A, Litzow MR (2001) Effect of slow lymphocyte recovery and type of graft-versus-host disease prophylaxis on relapse after allogeneic bone marrow transplantation for acute myelogenous leukemia. Bone Marrow Transplant 28(10):951–956

    Article  CAS  PubMed  Google Scholar 

  37. Lee KH, Choi SJ, Lee JH, Lee JS, Kim WK, Lee KB, Sohn SK, Kim JG, Kim DH, Seol M, Lee YS, Lee JH (2005) Prognostic factors identifiable at the time of onset of acute graft-versus-host disease after allogeneic hematopoietic cell transplantation. Haematologica 90(7):939–948

    PubMed  Google Scholar 

  38. Chakrabarti S, Brown J, Guttridge M, Pamphilon DH, Lankester A, Marks DI (2003) Early lymphocyte recovery is an important determinant of outcome following allogeneic transplantation with CD34 + selected graft and limited T-cell addback. Bone Marrow Transplant 32(1):23–30

    Article  CAS  PubMed  Google Scholar 

  39. Mueller AMS, Florek M, Hadeiba H, Shizuru JA (2010) Interactions between donor CD4 cells and residual host cells after nonmyeloablative hematopoietic stem cell transplantation suppress hematopoiesis and lead to graft rejection. In: 52nd Annual American Society of Hematology Meeting, Orlando, FL, 2010. p Abstract #75

  40. Salit RB, Fowler DH, Dean RM, Pavletic SZ, Hakim FT, Steinberg SM, Hardy NT, Sportes C, Gress RE, Bishop MR (2013) Host lymphocyte depletion as a strategy to facilitate early full donor chimerism after reduced-intensity allogeneic stem cell transplantation. Biol Blood Marrow Transplant 19(10):1509–1513. doi:10.1016/j.bbmt.2013.08.001

    Article  PubMed  Google Scholar 

  41. Petrus MJ, Williams JF, Eckhaus MA, Gress RE, Fowler DH (2000) An immunoablative regimen of fludarabine and cyclophosphamide prevents fully MHC-mismatched murine marrow graft rejection independent of GVHD. Biol Blood Marrow Transplant 6(2A):182–189

    Article  CAS  PubMed  Google Scholar 

  42. Hassan SB, Haglund C, Aleskog A, Larsson R, Lindhagen E (2007) Primary lymphocytes as predictors for species differences in cytotoxic drug sensitivity. Toxicol In Vitro 21(6):1174–1181. doi:10.1016/j.tiv.2007.03.009

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by grants from the National Institutes of Health: NHLBI (HL91744, HL36444), NCI (CA15704 (core), 18029, 78902), NIBIB (EB001975), and NIGMS (GM57980).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeannine S. McCune.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCune, J.S., Vicini, P., Salinger, D.H. et al. Population pharmacokinetic/dynamic model of lymphosuppression after fludarabine administration. Cancer Chemother Pharmacol 75, 67–75 (2015). https://doi.org/10.1007/s00280-014-2618-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-014-2618-2

Keywords

Navigation