Advertisement

Cancer Chemotherapy and Pharmacology

, Volume 72, Issue 3, pp 553–563 | Cite as

Pharmacodynamic modeling of cell cycle and apoptotic effects of gemcitabine on pancreatic adenocarcinoma cells

  • Salaheldin S. Hamed
  • Robert M. Straubinger
  • William J. JuskoEmail author
Original Article

Abstract

Purpose

The standard of care for treating patients with pancreatic adenocarcinomas includes gemcitabine (2′,2′-difluorodeoxycytidine). Gemcitabine primarily elicits its response by stalling the DNA replication forks of cells in the S phase of the cell cycle. To provide a quantitative framework for characterizing the cell cycle and apoptotic effects of gemcitabine, we developed a pharmacodynamic model in which the activation of cell cycle checkpoints or cell death is dependent on gemcitabine exposure.

Methods

Three pancreatic adenocarcinoma cell lines (AsPC-1, BxPC-3, and MiaPaca-2) were exposed to varying concentrations (0–100,000 ng/mL) of gemcitabine over a period of 96 h in order to quantify proliferation kinetics and cell distributions among the cell cycle phases. The model assumes that the drug can inhibit cycle-phase transitioning in each of the 3 phases (G1, S, and G2/M) and can cause apoptosis of cells in G1 and G2/M phases. Fitting was performed using the ADAPT5 program.

Results

The time course of gemcitabine effects was well described by the model, and parameters were estimated with good precision. Model predictions and experimental data show that gemcitabine induces cell cycle arrest in the S phase at low concentrations, whereas higher concentrations induce arrest in all cell cycle phases. Furthermore, apoptotic effects of gemcitabine appear to be minimal and take place at later time points.

Conclusion

The pharmacodynamic model developed provides a quantitative, mechanistic interpretation of gemcitabine efficacy in 3 pancreatic cancer cell lines, and provides useful insights for rational selection of chemotherapeutic agents for combination therapy.

Keywords

Modeling Gemcitabine Cell cycle Cytotoxicity Pharmacodynamics 

Notes

Acknowledgments

This work is supported by Grant GM57980 from the National Institutes of Health. SSH was supported by a Fellowship from Hoffmann-La Roche Inc.

References

  1. 1.
    Hui YF, Reitz J (1997) Gemcitabine: a cytidine analogue active against solid tumors. Am J Health Syst Pharm 54:162–170PubMedGoogle Scholar
  2. 2.
    Hilbig A, Oettle H (2008) Gemcitabine in the treatment of metastatic pancreatic cancer. Expert Rev Anticancer Ther 8:511–523PubMedCrossRefGoogle Scholar
  3. 3.
    Heinemann V, Hertel LV, Grindey GB, Plunkett W (1988) Comparison of the cellular pharmacokinetics and toxicity of 2′,2′-difluorodeoxycytidine and 1-b-arabinofuranosylcytosine. Cancer Res 48:4024–4031PubMedGoogle Scholar
  4. 4.
    Carpenelli G, Bucci G, D’Agnano I, Canese R, Caroli F, Raus L, Brunetti E, Giannarelli E, Podo F, Carapella CM (2006) Gemcitabine treatment of experimental C6 glioma: the effects on cell cycle and apoptotic rate. Anticancer Res 26:3017–3024Google Scholar
  5. 5.
    Cappella P, Tomasoni D, Faretta M, Lupi M, Montalenti F, Viale F, Banzato F, D’Incalci M, Ubezio P (2001) Cell cycle effects of gemcitabine. Int J Cancer 93:401–408PubMedCrossRefGoogle Scholar
  6. 6.
    Jusko WJ (1971) Pharmacodynamics of chemotherapeutic effects: dose–time–response relationships for phase-nonspecific agents. J Pharm Sci 60:892–895PubMedCrossRefGoogle Scholar
  7. 7.
    Jusko WJ (1973) A pharmacodynamic model for cell-cycle-specific chemotherapeutic agents. J Pharmacokinet Biopharm 1:175–200CrossRefGoogle Scholar
  8. 8.
    Gardner SN (2000) A mechanistic, predictive model of dose–response curves for cell cycle phase-specific and -nonspecific drugs. Cancer Res 60:1417–1425PubMedGoogle Scholar
  9. 9.
    Basse B, Baguley BC, Marshall ES, Joseph WR, van Brunt B, Wake G, Wall DJ (2004) Modelling cell death in human tumour cell lines exposed to the anticancer drug paclitaxel. J Math Biol 49:329–357PubMedCrossRefGoogle Scholar
  10. 10.
    Kozusko F, Chen P, Grant SG, Day BW, Panetta JC (2001) A mathematical model of in vitro cancer cell growth and treatment with the antimitotic agent curacin A. Math Biosci 170:1–16PubMedCrossRefGoogle Scholar
  11. 11.
    Panetta JC, Evans WE, Cheok MH (2006) Mechanistic mathematical modelling of mercaptopurine effects on cell cycle of human acute lymphoblastic leukaemia cells. Br J Cancer 94:93–100PubMedCrossRefGoogle Scholar
  12. 12.
    Gardner SN (2002) Modeling multi-drug chemotherapy: tailoring treatment to individuals. J Theor Biol 214:181–207PubMedCrossRefGoogle Scholar
  13. 13.
    D’Argenio DZ, Schumitzky A, Wang X (2009) ADAPT 5 user’s guide: pharmacokinetic/pharmacodynamic systems analysis software. Biomedical Simulations Resource, Los AngelesGoogle Scholar
  14. 14.
    Florian JA, Eiseman JL, Parker RS (2005) Accounting for quiescent cells in tumour growth and cancer treatment. Syst Biol (Stevenage) 152:185–192CrossRefGoogle Scholar
  15. 15.
    Sherer E, Hannemann RE, Rundell A, Ramkrishna D (2006) Analysis of resonance chemotherapy in leukemia treatment via multi-staged population balance models. J Theor Biol 240:648–661PubMedCrossRefGoogle Scholar
  16. 16.
    Hamed SS, Roth CM (2001) Mathematical modeling to distinguish cell cycle arrest and cell killing in chemotherapeutic concentration response curves. J Pharmacokinet Pharmacodyn 38:385–403CrossRefGoogle Scholar
  17. 17.
    Batista LF, Roos WP, Kaina B, Menck CF (2009) p53 mutant human glioma cells are sensitive to UV-C-induced apoptosis due to impaired cyclobutane pyrimidine dimer removal. Mol Cancer Res 7:237–246PubMedCrossRefGoogle Scholar
  18. 18.
    Ruan S, Okcu MF, Ren JP, Chiao P, Andreeff M, Levin V, Zhang W (1998) Overexpressed WAF1/Cip1 renders glioblastoma cells resistant to chemotherapy agents 1,3-bis(2-chloroethyl)-1-nitrosourea and cisplatin. Cancer Res 58:1538–1543PubMedGoogle Scholar
  19. 19.
    Xu GW, Nutt CL, Zlatescu MC, Keeney M, Chin-Yee I, Cairncross JG (2001) Inactivation of p53 sensitizes U87MG glioma to 1,3-bis(2-chloroethyl)-1-nitrosourea. Cancer Res 61:4155–4159PubMedGoogle Scholar
  20. 20.
    Damia G, Broggini M (2004) Improving the selectivity of cancer treatments by interfering with cell response pathways. Eur J Cancer 40:2550–2559PubMedCrossRefGoogle Scholar
  21. 21.
    Damia G, Broggini M (2004) Cell cycle checkpoint proteins and cellular response to treatment by anticancer agents. Cell Cycle 3:46–50PubMedCrossRefGoogle Scholar
  22. 22.
    Senderowicz AM (2004) Targeting cell cycle and apoptosis for the treatment of human malignancies. Curr Opin Cell Biol 16:670–678PubMedCrossRefGoogle Scholar
  23. 23.
    Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr 19:716–723CrossRefGoogle Scholar
  24. 24.
    Ewald B, Sampath D, Plunkett W (2007) H2AX phosphorylation marks gemcitabine-induced stalled replication forks and their collapse upon S-phase checkpoint abrogation. Mol Cancer Ther 6:1239–1248PubMedCrossRefGoogle Scholar
  25. 25.
    Zhou BB, Elledge SJ (2000) The DNA damage response: putting checkpoints in perspective. Nature 408:433–439PubMedCrossRefGoogle Scholar
  26. 26.
    Azorsa DO, Gonzales IM, Basu GD, Choudhary A, Arora S, Bisanz KM, Kiefer JA, Henderson MC, Trent JM, Von Hoff DD, Mousses S (2009) Synthetic lethal RNAi screening identifies sensitizing targets for gemcitabine therapy in pancreatic cancer. J Transl Med 7:43PubMedCrossRefGoogle Scholar
  27. 27.
    Pauwels B, Korst AE, Pattyn GG, Lambrechts HA, Van Bockstaele DR, Vermeulen K, Lenjou M, de Pooter CM, Vermorken JB, Lardon F (2003) Cell cycle effect of gemcitabine and its role in the radiosensitizing mechanism in vitro. Int J Radiat Oncol Biol Phys 57:1075–1083PubMedCrossRefGoogle Scholar
  28. 28.
    Chandler NM, Canete JJ, Callery MP (2004) Caspase-3 drives apoptosis in pancreatic cancer cells after treatment with gemcitabine. J Gastrointest Surg 8:1072–1078PubMedCrossRefGoogle Scholar
  29. 29.
    Arora S, Bhardwaj A, Srivastava SK, Singh S, McClellan S, Wang B, Singh AP (2011) Honokiol arrests cell cycle, induces apoptosis, and potentiates the cytotoxic effect of gemcitabine in human pancreatic cancer cells. PLoS One 6:e21573PubMedCrossRefGoogle Scholar
  30. 30.
    Holcomb B, Yip-Schneider MT, Matos JM, Dixon J, Kennard J, Mahomed J, Shanmugam R, Sebolt-Leopold J, Schmidt CM (2008) Pancreatic cancer cell genetics and signaling response to treatment correlate with efficacy of gemcitabine-based targeting strategies. J Gastrointest Surg 12:288–296PubMedCrossRefGoogle Scholar
  31. 31.
    Matsumoto K, Nagahara T, Okano J, Murawaki Y (2008) The growth inhibition of hepatocellular and cholangiocellular carcinoma cells by gemcitabine and the roles of extracellular signal-regulated and checkpoint kinases. Oncol Rep 20:863–872PubMedGoogle Scholar
  32. 32.
    Morgan MA, Parsels LA, Parsels JD, Mesiwala AK, Maybaum J, Lawrence TS (2005) Role of checkpoint kinase 1 in preventing premature mitosis in response to gemcitabine. Cancer Res 65:6835–6842PubMedCrossRefGoogle Scholar
  33. 33.
    Rajeshkumar NV, De Oliveira E, Ottenhof N, Watters J, Brooks D, Shumway SD, Mizuarai S, Hirai H, Maitra A, Hidalgo M (2011) MK-1775, a potent Wee1 inhibitor, synergizes with gemcitabine to achieve tumor regression selectively in p53-deficient pancreatic cancer xenografts. Clin Cancer Res 17:2799–27806PubMedCrossRefGoogle Scholar
  34. 34.
    Walton MI, Eve PD, Hayes A, Valenti M, De Haven Brandon A, Box G, Boxall KJ, Aherne GW, Eccles SA, Raynoud FI, Williams DH, Reader JC, Collins I, Garrett MD (2010) The preclinical pharmacology and therapeutic activity of the novel CHK1 inhibitor SAR-020106. Mol Cancer Ther 9:89–100PubMedCrossRefGoogle Scholar
  35. 35.
    Xu H, Cheung IY, Wei XX, Tran H, Gao X, Cheung NK (2011) Checkpoint kinase inhibitor synergizes with DNA-damaging agents in G(1) checkpoint-defective neuroblastoma. Int J Cancer 129:153–162Google Scholar
  36. 36.
    Tonkinson JL, Worzalla JF, Tseng CH, Mendelsohn LG (1999) Cell cycle modulation by a multitargeted antifolate, LY231514, increases the cytotoxicity and antitumor activity of gemcitabine in HT29 colon carcinoma. Cancer Res 59:3671–3676PubMedGoogle Scholar
  37. 37.
    Pratt SE, Durland-Busbice S, Shepard RL, Donoho GP, Starling JJ, Wickremsinhe ER, Perkinks EJ, Dantzig AH (2013) Efficacy of low-dose oral metronomic dosing of the prodrug of gemcitabine, LY2334737, in human xenografts. Mol Cancer Ther 12:481–490PubMedCrossRefGoogle Scholar
  38. 38.
    Sakamoto H, Kitano M, Suetomi Y, Takeyama Y, Ohyanagi H, Nakai T, Yasuda C, Kudo M (2006) Comparison of standard-dose and low-dose gemcitabine regimens in pancreatic adenocarcinoma patients: a prospective randomized trial. J Gastroenterol 41:70–76PubMedCrossRefGoogle Scholar
  39. 39.
    Tempero M, Plunkett W, van Haperen VR, Hainsworth J, Hochester H, Lenzi R, Abbruzzese J (2003) Randomized phase II comparison of dose-intense gemcitabine: thirty-minute infusion and fixed dose rate infusion in patients with pancreatic adenocarcinoma. J Clin Oncol 21:3402–3408PubMedCrossRefGoogle Scholar
  40. 40.
    Olive KP, Jacobetz MA, Davidson CJ, Gopinathan A, McIntyre D, Honess D, Madhu B, Goldgraben MA, Caldwell ME, Allard D, Frese KK, Denicola G, Feig C, Combs C, Winter SP, Ireland-Zecchini H, Reicheld S, Howat WJ, Chang A, Dhara M, Wang L, Ruckert F, Grutzmann R, Pilarsky C, Izeradjene K, Hingorani SR, Huang P, Davies SE, Plunkett W, Egorin M, Hruban RH, Whitebread N, McGovern K, Adams J, Iacobuzio-Donahue C, Griffiths J, Tuveson DA (2009) Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324:1457–1461PubMedCrossRefGoogle Scholar
  41. 41.
    Venkatasubramanian R, Henson MA, Forbes NS (2008) Integrating cell-cycle progression, drug penetration and energy metabolism to identify improved cancer therapeutic strategies. J Theor Biol 253:98–117PubMedCrossRefGoogle Scholar
  42. 42.
    Ribba B, Colin T, Schnell S (2006) A multiscale mathematical model of cancer, and its use in analyzing irradiation therapies. Theor Biol Med Model 3:7PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Salaheldin S. Hamed
    • 1
  • Robert M. Straubinger
    • 1
  • William J. Jusko
    • 1
    Email author
  1. 1.Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical SciencesUniversity at BuffaloBuffaloUSA

Personalised recommendations