Skip to main content

Metronomic chemotherapy for cancer treatment: a decade of clinical studies

Abstract

Purpose

Over the past few years, more and more new selective molecules directed against specific cellular targets have become available for cancer therapy, leading to impressive improvements. In this evolving scenario, a new way of delivering older cytotoxic drugs has also been developing. Many studies demonstrated that several cytotoxic drugs have antiangiogenic properties if administered frequently and at lower doses compared with standard schedules containing maximal tolerated doses (MTD). Such a new strategy, named metronomic chemotherapy, focuses on a different target: the slowly proliferating tumour endothelial cells. About 10 years ago, metronomic chemotherapy was firstly enunciated and hereafter many clinical experiences were published related to almost any cancer disease. This review analyses available studies dealing with metronomic chemotherapy and its combination with several targeted agents in solid tumours.

Methods

A computerized literature search of MEDLINE was performed using the following search terms: metronomic OR “continuous low dose” AND chemotherapy AND cancer OR solid tumours.

Results

Satisfactory results have been achieved in diverse tumour types, such as breast and prostate cancer or paediatric sarcomas. Moreover, many studies have reported that metronomic chemotherapy determined minimal toxicity compared to MTD chemotherapy. Overall, published series on metronomic schedules are very heterogeneous often reporting on retrospective data, while only very few studies were randomized trials. These limitations still prevent to draw definitive conclusions in diverse tumour types.

Conclusions

Large well-designed studies are eagerly awaited for confirming the promises of metronomic schedules and their combinations with targeted molecules.

This is a preview of subscription content, access via your institution.

References

  1. Krause DS, Van Etten RA (2005) Tyrosine kinases as targets for cancer therapy. N Engl J Med 353:172–187

    PubMed  CAS  Article  Google Scholar 

  2. Skipper HE, Schabel FM, Wilcox WS (1964) Experimental evaluation of potential anticancer agents. XIII. On the criteria and kinetics associated with “curability” of experimental leukemia. Cancer Chemother Rep 35:1–111

    PubMed  CAS  Google Scholar 

  3. Gasparini G (2001) Metronomic scheduling: the future of chemotherapy? Lancet Oncol 2:733–740

    PubMed  CAS  Article  Google Scholar 

  4. Browder T, Butterfield CE, Kräling BM et al (2000) Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res 7:1878–1886

    Google Scholar 

  5. Kerbel RS, Kamen BA (2004) The anti-angiogenic basis of metronomic chemotherapy. Nat Rev Cancer 4:423–436

    PubMed  CAS  Article  Google Scholar 

  6. Klement G, Baruchel S, Rak J et al (2000) Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumour regression without overt toxicity. J Clin Invest 105:R15–R24

    PubMed  CAS  Article  Google Scholar 

  7. Hanahan D, Bergers G, Bergsland E (2000) Less is more, regularly: metronomic dosing of cytotoxic drugs can target tumour angiogenesis in mice. J Clin Invest 105:1045–1047

    PubMed  CAS  Article  Google Scholar 

  8. Kamen BA, Rubin E, Aisner J et al (2000) High-Time chemotherapy or high time for low dose. J Clin Oncol 18:2935–2937

    PubMed  CAS  Google Scholar 

  9. Engelsman E, Klijn JC, Rubens RD et al (1991) “Classical” CMF versus a 3-weekly intravenous CMF schedule in postmenopausal patients with advanced breast cancer. An EORTC breast cancer co-operative group phase III trial (10808). Eur J Cancer 27:966–970

    PubMed  CAS  Article  Google Scholar 

  10. Kakolyris S, Samonis G, Koukourakis M et al (1998) Treatment of non-small-cell lung cancer with prolonged oral etoposide. Am J Clin Oncol 21:505–508

    PubMed  CAS  Article  Google Scholar 

  11. Lokich J, Anderson N (1997) Dose intensity for bolus versus infusion chemotherapy administration: review of the literature for 27 anti-neoplastic agents. Ann Oncol 8:15–25

    PubMed  CAS  Article  Google Scholar 

  12. Seidman AD, Hudis CA, Albanel J et al (1998) Dose-dense therapy with weekly 1-hour paclitaxel infusions in the treatment of metastatic breast cancer. J Clin Oncol 16:3353–3361

    PubMed  CAS  Google Scholar 

  13. Burstein HJ, Manola J, Younger J et al (2000) Docetaxel administered on a weekly basis for metastatic breast cancer. J Clin Oncol 18:1212–1219

    PubMed  CAS  Google Scholar 

  14. Abu-Rustum NR, Aghajanian C, Barakat RR et al (1997) Salvage weekly paclitaxel in recurrent ovarian cancer. Semin Oncol 24:S15-62–S15-67

    Google Scholar 

  15. Green MC, Buzdar AU, Smith T et al (2005) Weekly paclitaxel improves pathologic complete remission in operable breast cancer when compared with paclitaxel once every 3 week. JCO 23:5983–5992

    CAS  Article  Google Scholar 

  16. Sparano JA, Wang M, Martino S et al (2008) Weekly paclitaxel in the adjuvant treatment of breast cancer. N Engl J Med 358:1663–1671

    PubMed  CAS  Article  Google Scholar 

  17. Pietras K, Hanahan D (2005) A multitargeted, metronomic, and maximum-tolerated dose ‘‘chemo-switch’’ regimen is antiangiogenic, producing objective responses and survival benefit in a mouse model of cancer. J Clin Oncol 23:939–952

    PubMed  CAS  Article  Google Scholar 

  18. Pasquier E, Kavallaris M, André N (2010) Metronomic chemotherapy: new rationale for new directions. Nat Rev Clin Oncol 7:455–465

    PubMed  Article  Google Scholar 

  19. Miller KD, Sweeney CJ, Sledge GW (2001) Redefining the target: chemotherapeutics as antiangiogenics. J Clin Oncol 19:1195–1206

    PubMed  CAS  Google Scholar 

  20. Lee KA, Qian DZ, Rey S et al (2009) Anthracycline chemotherapy inhibits HIF-1 transcriptional activity and tumor-induced mobilization of circulating angiogenic cells. Proc Natl Acad Sci 106:2353–2358

    PubMed  CAS  Article  Google Scholar 

  21. Kim YJ, Lee HJ, Kim TM et al (2013) Overcoming evasive resistance from vascular endothelial growth factor a inhibition in sarcomas by genetic or pharmacologic targeting of hypoxia-inducible factor 1α. Int J Cancer 132:29–41

    PubMed  CAS  Article  Google Scholar 

  22. André N, Padovani L, Pasquier E (2011) Metronomic scheduling of anticancer treatments: the next generation of multi target therapy? Future Oncol 7:385–394

    PubMed  Article  Google Scholar 

  23. Chuu CP, Hiipakka RA, Fukuchi J et al (2005) Androgen causes growth suppression and reversion of androgen-independent prostate cancer xenografts to an androgen stimulated phenotype in athymic mice. Cancer Res 65:2082–2084

    PubMed  CAS  Article  Google Scholar 

  24. Choi LM, Rood B, Kamani N et al (2008) Feasibility of metronomic maintenance chemotherapy following high-dose chemotherapy for malignant central nervous system tumors. Pediatr Blood Cancer 50:970–975

    PubMed  Article  Google Scholar 

  25. Peyrl A, Chocholous M, Kieran MW et al (2012) Antiangiogenic metronomic therapy for children with recurrent embryonal brain tumors. Pediatr Blood Cancer 59:511–517

    PubMed  Article  Google Scholar 

  26. Scadden DT (2006) The stem-cell niche as an entity of action. Nature 441:1075–1079

    PubMed  CAS  Article  Google Scholar 

  27. Calabrese C, Poppleton H, Kocak M et al (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11:69–82

    PubMed  CAS  Article  Google Scholar 

  28. Folkins C, Man S, Xu P et al (2007) Anticancer therapies combining antiangiogenic and tumor cell cytotoxic effects reduce the tumor stem-like cell fraction in glioma xenograft tumors. Cancer Res 67:3560–3564

    PubMed  CAS  Article  Google Scholar 

  29. Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    PubMed  CAS  Article  Google Scholar 

  30. Wong ET, Hess KR, Gleason MJ et al (1999) Outcomes and prognostic factors in recurrent glioma patients enrolled onto phase II clinical trials. J Clin Oncol 17:2572–2578

    PubMed  CAS  Google Scholar 

  31. Kurzen H, Schmitt S, Naher H et al (2003) Inhibition of angiogenesis by non-toxic doses of temozolomide. Anticancer Drugs 14:515–522

    PubMed  CAS  Article  Google Scholar 

  32. Tuettenberg J, Grobholz R, Korn T et al (2005) Continuous low-dose chemotherapy plus inhibition of cyclooxygenase-2 as an antiangiogenic therapy of glioblastoma multiforme. J Cancer Res Clin Oncol 131:31–40

    PubMed  CAS  Article  Google Scholar 

  33. Fulton D, Urtasun R, Forsyth P (1996) Phase II study of prolonged oral therapy with etoposide (VP16) for patients with recurrent malignant glioma. J Neurooncol 27:149–155

    PubMed  CAS  Article  Google Scholar 

  34. Herrlinger U, Rieger J, Steinbach JP et al (2005) UKT-04 trial of continuous metronomic low-dose chemotherapy with methotrexate and cyclophosphamide for recurrent glioblastoma. J Neurooncol 71:295–299

    PubMed  CAS  Article  Google Scholar 

  35. Kesari S, Schiff D, Doherty L et al (2007) Phase II study of metronomic chemotherapy for recurrent malignant gliomas in adults. Neuro Oncol 9:354–363

    PubMed  CAS  Article  Google Scholar 

  36. Reardon DA, Desjardins A, Vredenburgh JJ et al (2009) Metronomic chemotherapy with daily, oral etoposide plus bevacizumab for recurrent malignant glioma: a phase II study. Br J Cancer 101:1986–1994

    PubMed  CAS  Article  Google Scholar 

  37. Kong DS, Lee JI, Kim JH et al (2010) Phase II trial of low-dose continuous (metronomic) treatment of temozolomide for recurrent glioblastoma. Neuro Oncol 12:289–296

    PubMed  CAS  Article  Google Scholar 

  38. Perry JR, Bélanger K, Mason WP et al (2010) Phase II trial of continuous dose-intense temozolomide in recurrent malignant glioma: RESCUE study. J Clin Oncol 28:2051–2057

    PubMed  CAS  Article  Google Scholar 

  39. Stockhammer F, Misch M, Koch A et al (2010) Continuous low-dose temozolomide and celecoxib in recurrent glioblastoma. J Neurooncol 100:407–415

    PubMed  CAS  Article  Google Scholar 

  40. Vredenburgh JJ, Desjardins A, Herndon JE 2nd et al (2007) Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol 25:4722–4729

    PubMed  CAS  Article  Google Scholar 

  41. Reardon DA, Desjardins A, Peters K et al (2011) Phase II study of metronomic chemotherapy with bevacizumab for recurrent glioblastoma after progression on bevacizumab therapy. J Neurooncol 103:371–379

    PubMed  CAS  Article  Google Scholar 

  42. Desjardins A, Reardon DA, Coan A et al (2012) Bevacizumab and daily temozolomide for recurrent glioblastoma. Cancer 118:1302–1312

    PubMed  CAS  Article  Google Scholar 

  43. Friedman HS, Prados MD, Wen PY et al (2009) Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol 27:4733–4740

    PubMed  CAS  Article  Google Scholar 

  44. Clarke JL, Iwamoto FM, Sul J et al (2009) Randomized phase II trial of chemoradiotherapy followed by either dose-dense or metronomic temozolomide for newly diagnosed glioblastoma. J Clin Oncol 27:3861–3867

    PubMed  CAS  Article  Google Scholar 

  45. Sterba J, Valik D, Mudry P et al (2006) Combined biodifferentiating and antiangiogenic oral metronomic therapy is feasible and effective in relapsed solid tumors in children: single-center pilot study. Onkologie 29:308–313

    PubMed  CAS  Article  Google Scholar 

  46. Janss AJ, Minturn JE, Fisher PG et al (2011) A phase II study of metronomic oral topotecan for recurrent childhood brain tumors. Pediatr Blood Cancer 56:39–44

    PubMed  Article  Google Scholar 

  47. Slamon DJ, Leyland-Jones B, Shak S et al (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344:783–792

    PubMed  CAS  Article  Google Scholar 

  48. Miller K, Wang M, Gralow J et al (2007) Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med 357:2666–2676

    PubMed  CAS  Article  Google Scholar 

  49. Miles DW, Chan A, Dirix LY (2010) Phase III study of bevacizumab plus docetaxel compared with placebo plus docetaxel for the first-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer. J Clin Oncol 28:3239–3247

    PubMed  CAS  Article  Google Scholar 

  50. Geyer CE, Forster J, Lindquist D et al (2006) Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med 355:2733–2743

    PubMed  CAS  Article  Google Scholar 

  51. Thomas ES, Gomez HL, Li RK et al (2007) Ixabepilone plus capecitabine for metastatic breast cancer progressing after anthracycline and taxane treatment. J Clin Oncol 25:5210–5217

    PubMed  CAS  Article  Google Scholar 

  52. Ge Y, Domschke C, Stoiber N et al (2012) Metronomic cyclophosphamide treatment in metastasized breast cancer patients: immunological effects and clinical outcome. Cancer Immunol Immunother 61:353–362

    PubMed  CAS  Article  Google Scholar 

  53. Colleoni M, Rocca A, Sandri MTM et al (2002) Low-dose oral methotrexate and cyclophosphamide in metastatic breast cancer: antitumour activity and correlation with vascular endothelial growth factor levels. Ann Oncol 13:73–80

    PubMed  CAS  Article  Google Scholar 

  54. Miscoria M, Tonetto F, Deroma L et al (2011) Exploratory predictive and prognostic factors in advanced breast cancer treated with metronomic chemotherapy. Anticancer Drugs 23:326–334

    Article  CAS  Google Scholar 

  55. Gebbia V, Boussen H, Valerio MR et al (2012) Oral metronomic cyclophosphamide with and without methotrexate as palliative treatment for patients with metastatic breast carcinoma. Anticancer Res 32:529–536

    PubMed  CAS  Google Scholar 

  56. Colleoni M, Orlando L, Sanna G et al (2006) Metronomic low-dose oral cyclophosphamide and methotrexate plus or minus thalidomide in metastatic breast cancer: antitumour activity and biological effects. Ann Oncol 17:232–238

    PubMed  CAS  Article  Google Scholar 

  57. Wong NS, Buckman RA, Clemons M et al (2010) Phase I/II trial of metronomic chemotherapy with daily dalteparin and cyclophosphamide, twice-weekly methotrexate, and daily prednisone as therapy for metastatic breast cancer using vascular endothelial growth factor and soluble vascular endothelial growth factor receptor levels as markers of response. J Clin Oncol 28:723–730

    PubMed  CAS  Article  Google Scholar 

  58. Khan OA, Blann AD, Payne MJ et al (2011) Continuous low-dose cyclophosphamide and methotrexate combined with celecoxib for patients with advanced cancer. Br J Cancer 104:1822–1827

    PubMed  CAS  Article  Google Scholar 

  59. Orlando L, Cardillo A, Ghisini R et al (2006) Trastuzumab in combination with metronomic cyclophosphamide and methotrexate in patients with HER-2 positive metastatic breast cancer. BMC Cancer 6:225

    PubMed  Article  CAS  Google Scholar 

  60. Gonzalez-Billalabeitia E, Calzas J, Castellano D et al (2009) Long-term follow-up of an anthracycline-containing metronomic chemotherapy schedule in advanced breast cancer. Breast J 15:551–553

    PubMed  Article  Google Scholar 

  61. Dellapasqua S, Mazza M, Colleoni M et al (2011) Pegylated liposomal doxorubicin in combination with low-dose metronomic cyclophosphamide as preoperative treatment for patients with locally advanced breast cancer. Breast 20:319–323

    PubMed  Article  Google Scholar 

  62. Wang Z, Lu J, Leaw S, Hong X et al (2012) An all-oral combination of metronomic cyclophosphamide plus capecitabine in patients with anthracycline- and taxane-pretreated metastatic breast cancer: a phase II study. Cancer Chemother Pharmacol 69:515–522

    PubMed  CAS  Article  Google Scholar 

  63. Yoshimoto M, Takao S, Hirata M et al (2012) Metronomic oral combination chemotherapy with capecitabine and cyclophosphamide: a phase II study in patients with HER2-negative metastatic breast cancer. Cancer Chemother Pharmacol 70:331–338

    PubMed  CAS  Article  Google Scholar 

  64. Fedele P, Marino A, Orlando L et al (2012) Efficacy and safety of low-dose metronomic chemotherapy with capecitabine in heavily pretreated patients with metastatic breast cancer. Eur J Cancer 48:24–29

    PubMed  CAS  Article  Google Scholar 

  65. Smith IE, Johnston SR, O’Brien ME et al (2000) Low-dose oral fluorouracil with eniluracil as first-line chemotherapy against advanced breast cancer: a phase II study. J Clin Oncol 18:2378–2384

    PubMed  CAS  Google Scholar 

  66. Young SD, Lafrenie RM, Clemons MJ (2012) Phase II trial of a metronomic schedule of docetaxel and capecitabine with concurrent celecoxib in patients with prior anthracycline exposure for metastatic breast cancer. Curr Oncol 19:e75–e78

    PubMed  CAS  Article  Google Scholar 

  67. Addeo R, Sgambato A, Cennamo G et al (2010) Low dose metronomic oral administration of vinorelbine in the first line treatment of elderly patients with metastatic breast cancer. Clinical Breast Cancer 4:301–306

    Article  CAS  Google Scholar 

  68. Licchetta A, Correale P, Migali C et al (2010) Oral metronomic chemo-hormonal-therapy of metastatic breast cancer with cyclophosphamide and megestrol acetate. J Chemother 22:201–204

    PubMed  CAS  Google Scholar 

  69. Bottini A, Generali D, Brizzi MP et al (2006) Randomized phase II trial of letrozole and letrozole plus low-dose metronomic oral cyclophosphamide as primary systemic treatment in elderly breast cancer patients. J Clin Oncol 24:3623–3628

    PubMed  CAS  Article  Google Scholar 

  70. Dellapasqua S, Bertolini F, Bagnardi V et al (2008) Metronomic cyclophosphamide and capecitabine combined with bevacizumab in advanced breast cancer. J Clin Oncol 26:4899–4905

    PubMed  CAS  Article  Google Scholar 

  71. Montagna E, Cancello G, Bagnardi V et al (2012) Metronomic chemotherapy combined with bevacizumab and erlotinib in patients with metastatic HER2-negative breast cancer: clinical and biological activity. Clin Breast Cancer 12:207–214

    PubMed  CAS  Article  Google Scholar 

  72. Garcia-Saenz JA, Martin M, Calles A et al (2008) Bevacizumab in combination with metronomic chemotherapy in patients with anthracycline- and taxane refractory breast cancer. J Chemother 20:632–639

    PubMed  CAS  Google Scholar 

  73. Saloustros E, Kalbakis K, Vardakis N et al (2011) Metronomic vinorelbine plus bevacizumab as salvage therapy for patients with metastatic breast cancer. J Buon 16:215–218

    PubMed  CAS  Google Scholar 

  74. Soriano JL, Batista N, Santiesteban E et al (2011) Metronomic cyclophosphamide and methotrexate chemotherapy combined with 1E10 anti-idiotype vaccine in metastatic breast cancer. Int J Breast Cancer 2011:710292

    PubMed  Google Scholar 

  75. Watanabe T, Sano M, Takashima S et al (2009) Oral uracil and tegafur compared with classic cyclophosphamide, methotrexate, fluorouracil as postoperative chemotherapy in patients with node-negative, high-risk breast cancer: national surgical adjuvant study for breast cancer 01 trial. J Clin Oncol 27:1368–1374

    PubMed  CAS  Article  Google Scholar 

  76. Ohashi Y, Watanabe T, Sano M et al (2010) Efficacy of oral tegafur-uracil (UFT) as adjuvant therapy as compared with classical cyclophosphamide, methotrexate, and 5-fluorouracil (CMF) in early breast cancer: a pooled analysis of two randomized controlled trials (NSAS-BC 01 trial and CUBC trial). Breast Cancer Res Treat 119:633–641

    PubMed  CAS  Article  Google Scholar 

  77. Scagliotti GV, Parikh P, von Pawel J et al (2008) Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. J Clin Oncol 26:3543–3551

    PubMed  CAS  Article  Google Scholar 

  78. Fossella F, Pereira JR, von Pawel J et al (2003) Randomized, multinational, phase III study of docetaxel plus platinum combinations versus vinorelbine plus cisplatin for advanced non-small-cell lung cancer: the TAX 326 study group. J Clin Oncol 21:3016–3024

    PubMed  CAS  Article  Google Scholar 

  79. Pirker R, Pereira JR, Szczesna A et al (2009) FLEX study TeamCetuximab plus chemotherapy in patients with advanced non-small-cell lung cancer (FLEX): an open-label randomised phase III trial. Lancet 373:1525–1531

    PubMed  CAS  Article  Google Scholar 

  80. Jackman DM, Miller VA, Cioffredi LA et al (2009) Impact of epidermal growth factor receptor and KRAS mutations on clinical outcomes in previously untreated non-small cell lung cancer patients: results of an online tumour registry of clinical trials. Clin Cancer Res 15:5267–5273

    PubMed  CAS  Article  Google Scholar 

  81. Shepherd FA, Rodrigues Pereira J, Ciuleanu T et al (2005) National Cancer Institute of Canada Clinical Trials GroupErlotinib in previously treated non-small-cell lung cancer. N Engl J Med 353:123–132

    PubMed  CAS  Article  Google Scholar 

  82. Kato H, Ichinose Y, Ohta M et al (2004) A randomized trial of adjuvant chemotherapy with uracil-tegafur for adenocarcinoma of the lung. N Engl J Med 350:1713–1721

    PubMed  CAS  Article  Google Scholar 

  83. Correale P, Cerretani D, Remondo C et al (2006) A novel metronomic chemotherapy regimen of weekly platinum and daily oral etoposide in high-risk non small cell lung cancer patients. Oncol Rep 16:133–140

    PubMed  CAS  Google Scholar 

  84. Correale P, Remondo C, Carbone SF et al (2010) Dose/dense metronomic chemotherapy with fractioned cisplatin and oral daily etoposide enhances the anti-angiogenic effects of bevacizumab and has strong antitumour activity in advanced non-small-cell-lung cancer patients. Cancer Biol Ther 9:685–693

    PubMed  Article  Google Scholar 

  85. Correale P, Botta C, Basile A et al (2011) Phase II trial of Bevacizumab and dose/dense chemotherapy with Cisplatin and metronomic daily oral etoposide in advanced non small cell lung cancer patients. Cancer Biol Ther 12:112–118

    PubMed  CAS  Article  Google Scholar 

  86. Gorn M, Habermann CR, Anige M et al (2008) A pilot study of docetaxel and trofosfamide as second-line ‘metronomic’ chemotherapy in the treatment of metastatic non-small cell lung cancer (NSCLC). Onkologie 31:185–189

    PubMed  Google Scholar 

  87. Tas F, Duranyildiz D, Soydinc HO et al (2008) Effect of maximum-tolerated doses and low-dose metronomic chemotherapy on serum vascular endothelial growth factor and thrombospondin-1 levels in patients with advanced nonsmall cell lung cancer. Cancer Chemother Pharmacol 61:721–725

    PubMed  CAS  Article  Google Scholar 

  88. Pallis AG, Chandrinos V, Pavlakou G et al (2011) A multicenter phase I trial of metronomic oral vinorelbine plus cisplatin in patients with NSCLC. Cancer Chemother Pharmacol 67:1239–1245

    PubMed  CAS  Article  Google Scholar 

  89. Kouroussis C, Vamvakas L, Vardakis N et al (2009) Continuous administration of daily low-dose temozolomide in pretreated patients with advanced non-small cell lung cancer: a phase II study. Oncology 76:112–117

    PubMed  CAS  Article  Google Scholar 

  90. Chen YM, Fan WC, Tsai CM et al (2011) A phase II randomized trial of Gefitinib alone or with tegafur/uracil treatment in patients with pulmonary adenocarcinoma who had failed previous chemotherapy. J Thorac Oncol 6:1110–1116

    PubMed  Article  Google Scholar 

  91. Maki RG, Wathen JK, Patel SR et al (2007) Randomized phase II study of gemcitabine and docetaxel compared with gemcitabine alone in patients with metastatic soft tissue sarcomas: results of sarcoma alliance for research through collaboration study 002 [corrected]. J Clin Oncol 25:2755–2763 (Erratum in: J Clin Oncol 25:3790)

    Google Scholar 

  92. Garcia del Muro X, Lopez-Pousa A, Martin J et al (2005) A phase II trial of temozolomide as a 6-week, continuous, oral schedule in patients with advanced soft tissue sarcoma: a study by the Spanish Group for Research on Sarcomas. Cancer 104:1706–1712

    PubMed  CAS  Article  Google Scholar 

  93. van der Graaf WT, Blay JY, Chawla SP et al (2012) Pazopanib for metastatic soft-tissue sarcoma (PALETTE): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet 379:1879–1886

    PubMed  Article  CAS  Google Scholar 

  94. Hartmann JT, Oechsle K, Mayer F et al (2003) Phase II trial of trofosfamide in patients with advanced pretreated soft tissue sarcomas. Anticancer Res 23:1899–1901

    PubMed  CAS  Google Scholar 

  95. Vogt T, Hafner C, Bross K et al (2003) Antiangiogenetic therapy with pioglitazone, rofecoxib and metronomic trofosfamide in patients with advanced malignant vascular tumours. Cancer 98:2251–2256

    PubMed  CAS  Article  Google Scholar 

  96. Reichle A, Bross K, Vogt T et al (2004) Pioglitazone and Rofecoxib combined with angiostatically scheduled trofosfamide in the treatment of far-advanced melanoma and soft tissue sarcoma. Cancer 101:2247–2256

    PubMed  CAS  Article  Google Scholar 

  97. Briasoulis E, Pappas P, Puozzo C et al (2009) Dose-ranging study of metronomic oral vinorelbine in patients with advanced refractory cancer. Clin Cancer Res 15:6454–6461

    PubMed  CAS  Article  Google Scholar 

  98. Italiano A, Toulmonde M, Lortal B et al (2010) Metronomic chemotherapy in advanced soft tissue sarcomas. Cancer Chemother Pharmacol 66:197–202

    PubMed  CAS  Article  Google Scholar 

  99. Mir O, Domont J, Cioffi A et al (2011) Feasibility of metronomic oral cyclophosphamide plus prednisolone in elderly patients with inoperabile or metastatic soft tissue sarcoma. Eur J Cancer 47:515–519

    PubMed  CAS  Article  Google Scholar 

  100. Casanova M, Ferrari A, Bisogno G et al (2004) Vinorelbin and low dose cyclophosphamide in the treatment of pediatric sarcomas: pilot study for upcoming European Rhabdomyosarcoma Protocol. Cancer 101:1664–1671

    PubMed  CAS  Article  Google Scholar 

  101. Minard-Colin V, Ichante JL, Nguyen L et al (2012) Phase II study of vinorelbine and continuous low doses cyclophosphamide in children and young adults with a relapsed or refractory malignant solid tumour: good tolerance profile and efficacy in rhabdomyosarcoma–a report from the Société Française des Cancers et leucémies de l’Enfant et de l’adolescent (SFCE). Eur J Cancer 48:2409–2416

    PubMed  CAS  Article  Google Scholar 

  102. Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723

    PubMed  CAS  Article  Google Scholar 

  103. Robert C, Thomas L, Bondarenko I et al (2011) Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 364:2517–2526

    PubMed  CAS  Article  Google Scholar 

  104. Chapman PB, Hauschild A, Robert C et al (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364:2507–2516

    PubMed  CAS  Article  Google Scholar 

  105. Borne E, Desmedt E, Duhamel A et al (2010) Oral metronomic cyclophosphamide in elderly with metastatic melanoma. Invest New Drugs 28:684–689

    PubMed  CAS  Article  Google Scholar 

  106. Spieth K, Kaufmann R, Gille J (2003) Metronomic oral low-dose treosulfan chemotherapy combined with cyclooxygenase-2 inhibitor in pretreated advanced melanoma: a pilot study. Cancer Chemother Pharmacol 52:377–382

    PubMed  CAS  Article  Google Scholar 

  107. Hwu WJ, Krown SE, Menell JH et al (2003) Phase II study of temozolomide plus thalidomide for the treatment of metastatic melanoma. J Clin Oncol 21:3351–3356

    PubMed  CAS  Article  Google Scholar 

  108. Clark JI, Moon J, Hutchins LF et al (2010) Phase 2 trial of combination thalidomide plus temozolomide in patients with metastatic malignant melanoma: Southwest Oncology Group S0508. Cancer 116:424–431

    PubMed  CAS  Article  Google Scholar 

  109. Bhatt RS, Merchan J, Parker R et al (2010) A phase 2 pilot trial of low-dose, continuous infusion, or “metronomic” paclitaxel and oral celecoxib in patients with metastatic melanoma. Cancer 116:1751–1756

    PubMed  CAS  Article  Google Scholar 

  110. Reichle A, Vogt T, Coras B et al (2007) Targeted combined anti-inflammatory and angiostatic therapy in advanced melanoma: a randomized phase II trial. Melanoma Res 17:360–364

    PubMed  CAS  Article  Google Scholar 

  111. Llovet JM, Ricci S, Mazzaferro V et al (2008) Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359:378–390

    PubMed  CAS  Article  Google Scholar 

  112. Hsu CH, Shen YC, Lin ZZ et al (2010) Phase II study of combining sorafenib with metronomic tegafur/uracil for advanced hepatocellular carcinoma. J Hepatol 53:126–131

    PubMed  CAS  Article  Google Scholar 

  113. Shao YY, Lin ZZ, Hsu C et al (2012) Efficacy, safety, and potential biomarkers of thalidomide plus metronomic chemotherapy for advanced hepatocellular carcinoma. Oncology 82:59–66

    PubMed  CAS  Article  Google Scholar 

  114. Treiber G, Wex T, Malfertheiner P (2009) Impact of different anticancer regimens on biomarkers of angiogenesis in patients with advanced hepatocellular cancer. Cancer Res Clin Oncol 135:271–281

    CAS  Article  Google Scholar 

  115. Van Cutsem E, Köhne CH, Láng I et al (2011) Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumour KRAS and BRAF mutation status. J Clin Oncol 29:2011–2019

    PubMed  Article  CAS  Google Scholar 

  116. Jonker DJ, O’Callaghan CJ, Karapetis CS et al (2007) Cetuximab for the treatment of colorectal cancer. N Engl J Med 357:2040–2048

    PubMed  CAS  Article  Google Scholar 

  117. Allegrini G, Falcone A, Fioravanti A et al (2008) A pharmacokinetic and pharmacodynamic study on metronomic irinotecan in metastatic colorectal cancer patients. Br J Cancer 98:1312–1319

    PubMed  CAS  Article  Google Scholar 

  118. Steinbild S, Arends J, Medinger M et al (2007) Metronomic antiangiogenic therapy with capecitabine and celecoxib in advanced tumour patients–results of a phase II study. Onkologie 30:629–635

    PubMed  CAS  Article  Google Scholar 

  119. Young SD, Whissell M, Noble JC et al (2006) Phase II clinical trial results involving treatment with low-dose daily oral cyclophosphamide, weekly vinblastine, and rofecoxib in patients with advanced solid tumours. Clin Cancer Res 12:3092–3098

    PubMed  CAS  Article  Google Scholar 

  120. Allegrini G, Di Desidero T, Barletta MT et al (2012) Clinical, pharmacokinetic and pharmacodynamic evaluations of metronomic UFT and cyclophosphamide plus celecoxib in patients with advanced refractory gastrointestinal cancers. Angiogenesis 15:275–286

    PubMed  CAS  Article  Google Scholar 

  121. Ogata Y, Sasatomi T, Mori S et al (2007) Significance of thymidine phosphorylase in metronomic chemotherapy using CPT-11 and doxifluridine for advanced colorectal carcinoma. Anticancer Res 27:2605–2611

    PubMed  CAS  Google Scholar 

  122. Lin PC, Chen WS, Chao TC et al (2007) Biweekly oxaliplatin plus 1-day infusional fluorouracil/leucovorin followed by metronomic chemotherapy with tegafur/uracil in pretreated metastatic colorectal cancer. Cancer Chemother Pharmacol 60:351–356

    PubMed  CAS  Article  Google Scholar 

  123. Ogata Y, Mori S, Ishibashi N et al (2007) Metronomic chemotherapy using weekly low-dosage CPT-11 and UFT as postoperative adjuvant therapy in colorectal cancer at high risk to recurrence. J Exp Clin Cancer Res 26:475–482

    PubMed  CAS  Google Scholar 

  124. Pyrhönen S, Kuitunen T, Nyandoto P et al (1995) Randomised comparison of fluorouracil, epidoxorubicin and methotrexate (FEMTX) plus supportive care with supportive care alone in patients with non-resectable gastric cancer. Br J Cancer 71:587–591

    PubMed  Article  Google Scholar 

  125. Wu H, Xin Y, Zhao J et al (2011) Metronomic docetaxel chemotherapy inhibits angiogenesis and tumour growth in a gastric cancer model. Cancer Chemother Pharmacol 68:879–887

    PubMed  CAS  Article  Google Scholar 

  126. Cejka D, Preusser M, Woehrer A et al (2008) Everolimus (RAD001) and anti-angiogenic cyclophosphamide show long-term control of gastric cancer growth in vivo. Cancer Biol Ther 7:1377–1385

    PubMed  CAS  Article  Google Scholar 

  127. He S, Shen J, Hong L, Niu L (2011) Capecitabine “metronomic” chemotherapy for palliative treatment of elderly patients with advanced gastric cancer after fluoropyrimidine-based chemotherapy. Med Oncol 9:100–106

    Google Scholar 

  128. Brizzi MP, Berruti A, Ferrero A et al (2009) Continuous 5-fluorouracil infusion plus long acting octreotide in advanced well-differentiated neuroendocrine carcinomas. A phase II trial of the Piemonte oncology network. BMC Cancer 9:388

    PubMed  Article  CAS  Google Scholar 

  129. Petrylak DP, Tangen CM, Hussain MH et al (2004) Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med 351:1513–1520

    PubMed  CAS  Article  Google Scholar 

  130. Berthold DR, Pond GR, Soban F et al (2008) Docetaxel plus prednisone or Mitoxantrone plus prednisoefor advanced prostate cancer: updated survival in the TAX 327 study. J Clin Oncol 26:242–245

    PubMed  CAS  Article  Google Scholar 

  131. de Bono JS, Oudard S, Ozguroglu M et al (2010) Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet 376:1147–1154

    PubMed  Article  CAS  Google Scholar 

  132. de Bono JS, Logothetis CJ, Molina A et al (2011) Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med 364:1995–2005

    PubMed  Article  Google Scholar 

  133. Lord R, Nair S, Schache A et al (2007) Low dose metronomic oral cyclophosphamide for hormone resistant prostate cancer: a phase II study. J Urol 177:2136–2140

    PubMed  CAS  Article  Google Scholar 

  134. Glode LM, Barqawi A, Crighton F et al (2003) Metronomic therapy with cyclophosphamide and dexamethasone for prostate carcinoma. Cancer 98:1643–1648

    PubMed  CAS  Article  Google Scholar 

  135. Nelius T, Klatte T, De Reise W et al (2010) Clinical outcome of patients with docetaxel-resistant hormone-refractory prostate cancer treated with second-line cyclophosphamide-based metronomic chemotherapy. Med Oncol 27:363–367

    PubMed  CAS  Article  Google Scholar 

  136. Ladoire S, Eymard JC, Zanetta S et al (2010) Metronomic oral cyclophosphamide prednisolone chemotherapy is an effective treatment for metastatic hormone-refractory prostate cancer after docetaxel failure. Anticancer Res 30:4317–4323

    PubMed  CAS  Google Scholar 

  137. Fontana A, Galli L, Fioravanti A et al (2009) Clinical and pharmacodynamic evaluation of metronomic cyclophosphamide, celecoxib, and dexamethasone in advanced hormone-refractory prostate cancer. Clin Cancer Res 15:4954–4962

    PubMed  CAS  Article  Google Scholar 

  138. Nishimura K, Nonomura N, Ono Y et al (2001) Oral combination of cyclophosphamide, uracil plus tegafur and estramustine for hormone-refractory prostate cancer. Oncology 60:49–54

    PubMed  CAS  Article  Google Scholar 

  139. Gebbia V, Serretta V, Borsellino N et al (2011) Salvage therapy with oral metronomic cyclophosphamide and methotrexate for castration-refractory metastatic adenocarcinoma of the prostate resistant to docetaxel. Urology 78:1125–1130

    PubMed  Article  Google Scholar 

  140. Hatano K, Nonomura N, Nishimura K et al (2011) Retrospective analysis of an oral combination of dexamethasone, uracil plus tegafur and cyclophosphamide for hormone-refractory prostate cancer. Jpn J Clin Oncol 41:253–259

    PubMed  Article  Google Scholar 

  141. Nelius T, Rinard K, Filleur S (2011) Oral/metronomic cyclophosphamide-based chemotherapy as option for patients with castration-refractory prostate cancer—review of the literature. Cancer Treat Rev 37:444–455

    PubMed  CAS  Article  Google Scholar 

  142. Motzer RJ, Hutson TE, Tomczak P et al (2007) Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med 356:115–124

    PubMed  CAS  Article  Google Scholar 

  143. Sternberg CN, Davis ID, Mardiak J et al (2010) Pazopanib in locally advanced or metastatic renal cell carcinoma: results of a randomized phase III trial. J Clin Oncol 28:1061–1068

    PubMed  CAS  Article  Google Scholar 

  144. Escudier B, Eisen T, Stadler WM et al (2007) Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 356:125–134

    PubMed  CAS  Article  Google Scholar 

  145. Motzer RJ, Escudier B, Oudard S et al (2008) Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet 372:449–456

    PubMed  CAS  Article  Google Scholar 

  146. Rini BI, Escudier B, Tomczak P et al (2011) Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): a randomised phase 3 trial. Lancet 378:1931–1939

    PubMed  CAS  Article  Google Scholar 

  147. Eisen T, Boshoff C, Mak I et al (2000) Continuous low dose thalidomide: a phase II study in advanced melanoma, renal cell, ovarian and breast cancer. Br J Cancer 82:812–817

    PubMed  CAS  Article  Google Scholar 

  148. Krzyzanowska MK, Tannock IF, Lockwood G et al (2007) A phase II trial of continuous low-dose oral cyclophosphamide and celecoxib in patients with renal cell carcinoma. Cancer Chemother Pharmacol 60:135–141

    PubMed  CAS  Article  Google Scholar 

  149. Walter B, Schrettenbrunner I, Vogelhuber M et al (2011) Pioglitazone, etoricoxib, interferon-α, and metronomic capecitabine for metastatic renal cell carcinoma: final results of a prospective phase II trial. Med Oncol 29:799–805

    PubMed  Article  CAS  Google Scholar 

  150. Bellmunt J, Trigo JM, Calvo E et al (2010) Activity of a multitargeted chemo-switch regimen (sorafenib, gemcitabine, and metronomic capecitabine) in metastatic renal-cell carcinoma: a phase 2 study (SOGUG-02-06). Lancet Oncol 11:350–357

    PubMed  CAS  Article  Google Scholar 

  151. Burger RA, Brady MF, Bookman MA et al (2011) Incorporation of bevacizumab in the primary treatment of ovarian cancer. N Engl J Med 365:2473–2483

    PubMed  CAS  Article  Google Scholar 

  152. Naumann RW, Coleman RL (2011) Management strategies for recurrent platinum-resistant ovarian cancer. Drugs 71:1397–1412

    PubMed  CAS  Article  Google Scholar 

  153. Chura JC, Van Iseghem K, Downs LS et al (2007) Bevacizumab plus cyclophosphamide in heavily pretreated patients with recurrent ovarian cancer. Gynecol Oncol 107:326–330

    PubMed  CAS  Article  Google Scholar 

  154. Sanchez-Munoz A, Mendiola C, Perez-Ruiz E et al (2010) Bevacizumab plus low-dose metronomic oral cyclophosphamide in heavily pretreated patients with recurrent ovarian cancer. Oncology 79:98–100

    PubMed  CAS  Article  Google Scholar 

  155. Garcia AA, Hirte H, Fleming G et al (2008) Phase II clinical trial of bevacizumab and low-dose metronomic oral cyclophosphamide in recurrent ovarian cancer: a trial of the California, Chicago, and Princess Margaret Hospital phase II Consortia. J Clin Oncol 26:76–82

    PubMed  CAS  Article  Google Scholar 

  156. Collovà E et al (2011) Use of metronomic chemotherapy in oncology: results from a national Italian survey. Tumori 97:454–458

    PubMed  Google Scholar 

  157. Shaked Y, Emmenegger U, Man S et al (2005) Optimal biologic dose of metronomic chemotherapy regimens is associated with maximum antiangiogenic activity. Blood 106:3058–3061

    PubMed  CAS  Article  Google Scholar 

  158. Ghiringhelli F, Menard C, Puig PE et al (2007) Metronomic cyclophosphamide regimen selectively depletesCD4 + CD25 + regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother 56:641–648

    PubMed  CAS  Article  Google Scholar 

  159. Banissi C, Ghiringhelli F, Chen L, Carpentier AF (2009) Treg depletion with a low-dose metronomic temozolomide regimen in a rat glioma model. Cancer Immunol Immunother 58:1627–1634

    PubMed  CAS  Article  Google Scholar 

  160. Generali D, Bates G, Berruti A et al (2009) Immunomodulation of FOXP3 + regulatory T cells by the aromatase inhibitor letrozole in breast cancer patients. Clin Cancer Res 15:1046–1051

    PubMed  CAS  Article  Google Scholar 

  161. Streubel B, Chott A, Huber D et al (2004) Lymphoma-specific genetic aberrations in microvascular endothelial cells in B-cell lymphomas. N Engl J Med 351:250–259

    PubMed  CAS  Article  Google Scholar 

  162. Rigolin GM, Fraulini C, Ciccone M et al (2006) Neoplastic circulating endothelial cells in multiple myeloma with 13q14 deletion. Blood 107:2531–2535

    PubMed  CAS  Article  Google Scholar 

  163. Akiyama K, Ohga N, Hida Y et al (2012) Tumor endothelial cells acquire drug resistance by MDR1 up-regulation via VEGF signaling in tumor microenvironment. Am J Pathol 180:1283–1293

    PubMed  CAS  Article  Google Scholar 

  164. Pasquier E, Tuset MP, Street J et al (2012) Concentration- and schedule-dependent effects of chemotherapy on the angiogenic potential and drug sensitivity of vascular endothelial cells. Angiogenesis (Epub ahead of print)

  165. Bertolini F, Paul S, Mancuso P et al (2003) Maximum tolerable dose and low-dose metronomic chemotherapy have opposite effects on the mobilization and viability of circulating endothelial progenitor cells. Cancer Res 63:4342–4346

    PubMed  CAS  Google Scholar 

  166. Francia G, Shaked Y, Hashimoto K et al (2012) Low-dose metronomic oral dosing of a prodrug of gemcitabine (LY2334737) causes antitumour effects in the absence of inhibition of systemic vasculogenesis. Mol Cancer Ther 11:680–689

    PubMed  CAS  Article  Google Scholar 

  167. Wu L, Tannock I (2003) Repopulation in murine breast tumours during and after sequential treatments with cyclophosphamide and 5-fluorouracil. Cancer Res 63:2134–2138

    PubMed  CAS  Google Scholar 

  168. Noberasco C, Spitaleri G, Mancuso P et al (2009) Safety, tolerability and biological effects of long-term metronomic administration of non-cytotoxic anti-angiogenic agents. Oncology 77:358–365

    PubMed  CAS  Article  Google Scholar 

  169. Shao YY, Lin ZZ, Chen TJ et al (2011) High circulating endothelial progenitor levels associated with poor survival of advanced hepatocellular carcinoma patients receiving sorafenib combined with metronomic chemotherapy. Oncology 81:98–103

    PubMed  CAS  Article  Google Scholar 

  170. Bertolini F, Marighetti P, Shaked Y (2010) Cellular and soluble markers of tumor angiogenesis: from patient selection to the identification of the most appropriate postresistance therapy. Biochim Biophys Acta 1806:131–137

    PubMed  CAS  Google Scholar 

  171. Calleri A, Bono A, Bagnardi V et al (2009) Predictive potential of angiogenic growth factors and circulating endothelial cells in breast cancer patients receiving metronomic chemotherapy plus bevacizumab. Clin Cancer Res 15:7652–7657

    PubMed  CAS  Article  Google Scholar 

  172. Twardowski PW, Smith-Powell L, Carroll M et al (2008) Biologic markers of angiogenesis: circulating endothelial cells in patients with advanced malignancies treated on phase I protocol with metronomic chemotherapy and celecoxib. Cancer Invest 26:53–59

    PubMed  CAS  Article  Google Scholar 

  173. Bocci G, Francia G, Man S et al (2003) Thrombospondin 1, a mediator of the antiangiogenic effects of low-dose metronomic chemotherapy. Proc Natl Acad Sci USA 100:12917–12922

    PubMed  CAS  Article  Google Scholar 

  174. Kieran MW, Turner CD, Rubin JB et al (2005) Feasibility trial of antiangiogenic (metronomic) chemotherapy in pediatric patients with recurrent or progressive cancer. J Pediatr Hematol Oncol 27:573–581

    PubMed  Article  Google Scholar 

  175. Lansiaux A, Salingue S, Dewitte A et al (2012) Circulating thrombospondin 1 level as a surrogate marker in patients receiving cyclophosphamide-based metronomic chemotherapy. Invest New Drugs 30:403–404

    PubMed  CAS  Article  Google Scholar 

  176. Penel N, Clisant S, Dansin E et al (2010) Megestrol acetate versus metronomic cyclophosphamide in patients having exhausted all effective therapies under standard care. Br J Cancer 102:1207–1212

    PubMed  CAS  Article  Google Scholar 

  177. Bergers G, Hanahan D (2008) Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8:592–603

    PubMed  CAS  Article  Google Scholar 

  178. Cabral FR (1983) Isolation of Chinese hamster ovary cell mutants requiring the continuous presence of taxol for cell division. J Cell Biol 97:22–29

    PubMed  CAS  Article  Google Scholar 

  179. Kavallaris M, Kuo DY, Burkhart CA et al (1997) Taxol-resistant epithelial ovarian tumors are associated with altered expression of specific beta-tubulin isotypes. J Clin Invest 100:1282–1293

    PubMed  CAS  Article  Google Scholar 

  180. Yang CP, Verdier-Pinard P, Wang F et al (2005) A highly epothilone B-resistant A549 cell line with mutations in tubulin that confer drug dependence. Mol Cancer Ther 4:987–995

    PubMed  CAS  Article  Google Scholar 

  181. Zapletalova D, Andre N, Deak L et al (2012) Metronomic chemotherapy with the COMBAT regimen in advanced pediatric malignancies: a multicenter experience. Oncology 82:249–260

    PubMed  CAS  Article  Google Scholar 

  182. Bocci G, Nicolaou KC, Kerbel RS (2002) Protracted low-dose effects on human endothelial cell proliferation and survival in vitro reveal a elective antiangiogenic window for various chemotherapeutic drugs. Cancer Res 62:6938–6943

    PubMed  CAS  Google Scholar 

  183. Le Deley MC, Leblanc T, Shamsaldin A et al (2003) Risk of secondary leukemia after a solid tumor in childhood according to the dose of epipodophyllotoxins and anthracyclines: a case–control study by the Société Française d’Oncologie Pédiatrique. J Clin Oncol 21:1074–1081

    PubMed  Article  CAS  Google Scholar 

  184. Shaikh AJ, Masood N (2010) Acute lymphoblastic leukemia subsequent to temozolomide use in a 26-year-old man: a case report. J Med Case Reports 4:274

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Romiti.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Romiti, A., Cox, M.C., Sarcina, I. et al. Metronomic chemotherapy for cancer treatment: a decade of clinical studies. Cancer Chemother Pharmacol 72, 13–33 (2013). https://doi.org/10.1007/s00280-013-2125-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-013-2125-x

Keywords

  • Metronomic chemotherapy
  • Cancer therapy
  • “Continuous low dose” chemotherapy
  • Solid tumours