Cancer Chemotherapy and Pharmacology

, Volume 70, Issue 4, pp 491–502 | Cite as

Saccharomyces cerevisiae as a model system to study the response to anticancer agents

  • Renata Matuo
  • Fabrício G. Sousa
  • Daniele G. Soares
  • Diego Bonatto
  • Jenifer Saffi
  • Alexandre E. Escargueil
  • Annette K. Larsen
  • João Antonio Pêgas HenriquesEmail author
Review Article


The development of new strategies for cancer therapeutics is indispensable for the improvement of standard protocols and the creation of other possibilities in cancer treatment. Yeast models have been employed to study numerous molecular aspects directly related to cancer development, as well as to determine the genetic contexts associated with anticancer drug sensitivity or resistance. The budding yeast Saccharomyces cerevisiae presents conserved cellular processes with high homology to humans, and it is a rapid, inexpensive and efficient compound screening tool. However, yeast models are still underused in cancer research and for screening of antineoplastic agents. Here, the employment of S. cerevisiae as a model system to anticancer research is discussed and exemplified. Focusing on the important determinants in genomic maintenance and cancer development, including DNA repair, cell cycle control and epigenetics, this review proposes the use of mutant yeast panels to mimic cancer phenotypes, screen and study tumor features and synthetic lethal interactions. Finally, the benefits and limitations of the yeast model are highlighted, as well as the strategies to overcome S. cerevisiae model limitations.


Saccharomyces cerevisiae Anticancer drugs DNA repair Epigenetics Synthetic lethality 







Ataxia telangiectasia and Rad3 related


ATR-interacting protein


Ataxia telangiectasia mutated


Base excision repair




DNA methyl transferase


Double-strand break




5-Fluoro-2′-deoxyuridine 5′-monophosphate


Histone acetyl transferase


Histone deacetylase


High mobility group box-1


Homologous recombination




Mismatch repair


Methyl methane sulfonate


Nucleotide excision repair


Non-homologous end-joining


Poli (ADP-ribose) polymerase


Sodium phenylbutyrate


Proliferating cell nuclear antigen


Phosphatidylinositol 3-kinase


Post-replication repair


Replication protein A


Suberoylanilide hydroxamic acid


Translesion synthesis


Topoisomerase-binding protein-1


Single-strand DNA



We thank Dr. Temenouga N. Guecheva (Departamento de Biofisica da UFRGS) for critically reading the manuscript. This work was supported by research grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Biotecnology Center University of Rio Grande do Sul, Fundação de Coordenação de Aperfeiçoamento de Pessoal de Nível Superior CAPES/Cofecub (grants No. 583/07) and PRONEX/FAPERGS/CNPq (no. 10/0044-3). Renata Matuo and Fabricio have a fellowship from CNPq and CAPES, respectively, and are graduate students at UFRGS.

Conflict of interest



  1. 1.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70PubMedCrossRefGoogle Scholar
  2. 2.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674PubMedCrossRefGoogle Scholar
  3. 3.
    Spradling A, Ganetsky B, Hieter P, Johnston M, Olson M, Orr-Weaver T, Rossant J, Sanchez A, Waterston R (2006) New roles for model genetic organisms in understanding and treating human disease: report from the 2006 Genetic Society of America Meeting. Genetics 172:2025–2032PubMedGoogle Scholar
  4. 4.
    Perego P, Jimenez GS, Gatti L, Howell SB, Zunino F (2000) Yeast mutants as a model systems for identification of determinants of chemosensitivity. Pharmacol Rev 52:477–491PubMedGoogle Scholar
  5. 5.
    Kurtz JE, Dufour P, Duclos B, Bergerat JP, Exinger F (2004) Saccharomyces cerevisiae: an efficient tool and model system for anticancer research. Bull Cancer 91:133–139PubMedGoogle Scholar
  6. 6.
    Carr AM, Hoeskstra MF (1995) The cellular response to DNA damage. Trends Cell Biol 5:32–40PubMedCrossRefGoogle Scholar
  7. 7.
    Freire R, Murguia JR, Tarsounas M, Lowndes NF, Moens PB, Jackson SP (1998) Human and mouse homologs of Schizosaccharomyces pombe rad1 and Saccharomyces cerevisiae RAD17: linkage to checkpoint control and mammalian meiosis. Genes Dev 12:2560–2573PubMedCrossRefGoogle Scholar
  8. 8.
    Simon JA, Bedalov A (2004) Yeast as a model system for anticancer drug discovery. Nat Rev Cancer 4:1–8CrossRefGoogle Scholar
  9. 9.
    Longhese MP, Foiani M, Mulzi-Falconi M, Luccini G, Plevani P (1998) DNA damage checkpoint in budding yeast. EMBO 17:5525–5528CrossRefGoogle Scholar
  10. 10.
    Klionsky DJ, Cregg JM, Dunn WA Jr, Emr SD, Sakay Y, Sandoval IV, Sibirny A, Subramani S, Thumm M, Veenhuis M, Ohsumi Y (2003) A unified nomenclature for yeast autophagy-related genes. Dev Cell 5:539–545PubMedCrossRefGoogle Scholar
  11. 11.
    Suzuki K, Ohsumi Y (2007) Molecular machinery of autophagosome formation in yeast, Saccharomyces cerevisiae. FEBS Lett 581:2156–2161PubMedCrossRefGoogle Scholar
  12. 12.
    Almeida B, Silva A, Mesquita A, Sampaio-Marques B, Rodrigues F, Ludovico P (2008) Drug-induced apoptosis in yeast. Biochim Biophys Acta 1783:1436–1448PubMedCrossRefGoogle Scholar
  13. 13.
    Karathia H, Vilaprinyo E, Sorribas A, Alves R (2011) Saccharomyces cerevisiae as a model organism: a comparative study. PLoS One 6:1–10CrossRefGoogle Scholar
  14. 14.
    Mager WH, Winderichx J (2005) Yeast as a model for medical and medicinal research. Trends Pharmacol Sci 26:265–273PubMedCrossRefGoogle Scholar
  15. 15.
    Botstein D, Chervitz SA, Cherry JM (1997) Yeast as a model organism. Science 277:1259–1260PubMedCrossRefGoogle Scholar
  16. 16.
    Bolotin-Fukuhara M, Dumas B, Gaillardin C (2010) Yeasts as a model for human diseases. FEMS Yeast Res 10:959–960PubMedCrossRefGoogle Scholar
  17. 17.
    Strome ED, Plon SE (2010) Utilizing Saccharomyces cerevisiae to identify aneuploidy and cancer susceptibility genes. Methods Mol Biol 653:73–85PubMedCrossRefGoogle Scholar
  18. 18.
    Stirling PC, Bloom MS, Solanki-Patil T, Smith S, Sipahimalani P, Li Z, Kofoed M, Ben-Aroya S, Myung K, Hieter P (2011) The complete spectrum of yeast chromosome instability genes identifies candidate CIN cancer genes and functional roles for ASTRA complex components. PLoS Genet 7:1002057CrossRefGoogle Scholar
  19. 19.
    Yuen KWY, Warren CD, Chen O, Kwok T, Hieter P, Spencer FA (2007) Systematic genome instability screens in yeast and their potential relevance to cancer. Proc Natl Acad Sci USA 104:3925–3930PubMedCrossRefGoogle Scholar
  20. 20.
    Ardiani A, Higgins JP, Hodge JW (2010) Vaccines based on whole recombinant Saccharomyces cerevisiae cells. FEMS Yeast Res 10:1060–1069PubMedCrossRefGoogle Scholar
  21. 21.
    Meyskens FL Jr, Gerner EW (2011) Back to the future: mechanism-based, mutation-specific combination chemoprevention with a synthetic lethality approach. Cancer Prev Res 4:628–632CrossRefGoogle Scholar
  22. 22.
    Banerjee S, Kaye SB, Ashworth A (2010) Making the best of PARP inhibitors in ovarian cancer. Nat Rev Clin Oncol 7:508–519PubMedCrossRefGoogle Scholar
  23. 23.
    Rouleau M, Patel A, Hendzel MJ, Kaufmann SH, Poirier GG (2010) PARP inhibition: PARP1 and beyond. Nat Rev Cancer 10:293–301PubMedCrossRefGoogle Scholar
  24. 24.
    Hartwell LH, Szankasi P, Roberts CJ, Murray AW, Friend SH (1997) Integrating genetic approaches into the discovery of anticancer drugs. Science 278:1064–1068PubMedCrossRefGoogle Scholar
  25. 25.
    Broomfield S, Hryciw T, Xiao W (2001) DNA postreplication repair and mutagenesis in Saccharomyces cerevisiae. Mutat Res 486:167–184PubMedCrossRefGoogle Scholar
  26. 26.
    Fox EJ (2004) Mechanism of action of mitoxantrone. Neurology 63:15–18CrossRefGoogle Scholar
  27. 27.
    Moore DM, Karlin J, González-Barrera S, Mardiros A, Lisby M, Doughty A, Gilley J, Rothstein R, Friedberg EC, Fischhaber PL (2009) Rad10 exhibits lesion-dependent genetic requirements for recruitment to DNA double-strand breaks in Saccharomyces cerevisiae. Nucleic Acids Res 37:6429–6438PubMedCrossRefGoogle Scholar
  28. 28.
    Kule C, Ondrejickova O, Verner K (1994) Doxorubicin, daunorubicin, and mitroxantrone cytotoxicity in yeast. Mol Pharmacol 46:1234–1240PubMedGoogle Scholar
  29. 29.
    Chen XJ, Clark-Walker GD (2000) The petite mutation in yeasts: 50 years on. Int Rev Cytol 194:197–238PubMedCrossRefGoogle Scholar
  30. 30.
    Contamine V, Picard M (2000) Maintenance and integrity of the mitochondrial genome: a plethora of nuclear genes in the budding yeast. Microbiol Mol Biol Rev 64:281–315PubMedCrossRefGoogle Scholar
  31. 31.
    Buschini A, Poli P, Rossi C (2003) Saccharomyces cerevisiae as an eukaryotic cell model to access cytotoxicity and genotoxicity of three anticancer anthraquinones. Mutagenesis 18:25–36PubMedCrossRefGoogle Scholar
  32. 32.
    Aouida M, Page N, Leduc A, Peter M, Ramotar DA (2004) Genome-wide screen in Saccharomyces cerevisiae reveals altered transport as a mechanism of resistance to the anticancer drug bleomycin. Cancer Res 64:1102–1109PubMedCrossRefGoogle Scholar
  33. 33.
    Hoffmann GR, Laterza AM, Sylvia KE, Tartaglione JP (2011) Potentiation of the mutagenicity and recombinagenicity of bleomycin in yeast by unconventional intercalating agents. Environ Mol Mutagen 52:130–144PubMedCrossRefGoogle Scholar
  34. 34.
    Milla LA, Cortés CR, Hodar QC, Oñate MG, Cambiazo V, Burgess SM, Palma V (2012) Yeast-based assay identifies novel Shh/Gli target genes in vertebrate development. BMC Genomics 13:2PubMedCrossRefGoogle Scholar
  35. 35.
    Saze Z, Terashima M, Kogure M, Ohsuka F, Suzuki H, Gotoh M (2012) Activation of the Sonic Hedgehog Pathway and its prognostic impact in patients with gastric cancer. Dig Surg 29(2):115–123PubMedCrossRefGoogle Scholar
  36. 36.
    Yang L, Wang LS, Chen XL, Gatalica Z, Wiu S, Liu Z, Stoner G, Zhang G, Weiss H, Xie J (2012) Hedgehog signaling activation in the development of squamous cell carcinoma and adenocarcinoma of esophagus. Int J Biochem Mol Biol 3(1):46–57PubMedGoogle Scholar
  37. 37.
    Lillo O, Bracesco N, Nunes E (2011) Lethal and mutagenic interactions between γ-rays, cisplatin and etoposide at the cellular and molecular levels. Int J Radiat Biol 87:222–230PubMedCrossRefGoogle Scholar
  38. 38.
    Keszenman DJ, Candreva EC, Nunes E (2000) Cellular and molecular effects of bleomycin are modulated by heat shock in Saccharomyces cerevisiae. Mutat Res 459:29–41PubMedCrossRefGoogle Scholar
  39. 39.
    Keszenman DJ, Candreva EC, Sánchez AG, Nunes E (2005) RAD6 gene is involved in heat shock induction of bleomycin resistance in Saccharomyces cerevisiae. Environ Mol Mutagen 45:36–43PubMedCrossRefGoogle Scholar
  40. 40.
    Swanson RL, Morey NJ, Doetsch PW, Jinks-Robertson S (1999) Overlapping specificities of base excision repair, nucleotide excision repair, recombination and translesion synthesis pathways for DNA base damage in Saccharomyces cerevisiae. Mol Cell Biol 19:2929–2935PubMedGoogle Scholar
  41. 41.
    Hsieh P (2001) Molecular mechanisms of DNA mismatch repair. Mutat Res 486:71–87PubMedCrossRefGoogle Scholar
  42. 42.
    Bernstein C, Bernstein H, Payne CM, Garewal H (2002) DNA repair/pro-apoptotic dual role proteins in five major DNA repair pathways: fail-safe protection against carcinogenesis. Mutat Res 511:145–178PubMedCrossRefGoogle Scholar
  43. 43.
    Dudás A, Chovanec M (2004) Double strand break repair by homologous recombination. Mutat Res 566:131–167PubMedCrossRefGoogle Scholar
  44. 44.
    Dudásová Z, Dudás A, Chovanec M (2004) Non-homologous end-joining factors of Saccharomyces cerevisiae. FEMS Microbiol Rev 28:581–601PubMedCrossRefGoogle Scholar
  45. 45.
    Iyer RR, Pluciennik A, Burdett V, Modrich PL (2006) DNA mismatch repair: functions and Mechanisms. Chem Rev 106:302–323PubMedCrossRefGoogle Scholar
  46. 46.
    Peltomäki P (2001) DNA mismatch repair and cancer. Mutat Res 488:77–85PubMedCrossRefGoogle Scholar
  47. 47.
    Andressoo JO, Hoeijmakers JHJ, Mitchell JR (2006) Nucleotide excision repair disorders and the balance between cancer and aging. Cell Cycle 5:2886–2888PubMedCrossRefGoogle Scholar
  48. 48.
    Saffi J, Feldmann H, Winnacker EL, Henriques JAP (2001) Interaction of the yeast Pso5/Rad16 and Sgs1 proteins: influences on DNA repair and aging. Mutat Res 486:195–206PubMedCrossRefGoogle Scholar
  49. 49.
    Saffi J, Pereira VR, Henriques JAP (2000) Importance of the Sgs1 helicase activity in DNA repair of Saccharomyces cerevisiae. Curr Genet 37:75–78PubMedCrossRefGoogle Scholar
  50. 50.
    Rossi ML, Ghosh AK, Bohr VA (2010) Roles of Werner syndrome protein in protection of genome integrity. DNA Repair 9:331–344PubMedCrossRefGoogle Scholar
  51. 51.
    Mohammed MZ, Vyjayanti VN, Laughton CA, Dekker LV, Fischer PM, Wilson DM III, Abbotts R, Shah S, Patel PM, Hickson ID, Madhusudan S (2011) Development and evaluation of human AP endonuclease inhibitors in melanoma and glioma cell lines. Br J Cancer 104:653–663PubMedCrossRefGoogle Scholar
  52. 52.
    Helleday T, Petermann E, Lundin C, Hodgson B, Sharma RA (2008) DNA repair pathways as targets for cancer therapy. Nat Rev 8:193–204Google Scholar
  53. 53.
    Smith AM, Ammar R, Nislow C, Giaever G (2010) A survey of yeast genomic assays for drug and target discovery. Pharmacol Ther 127:156–164PubMedCrossRefGoogle Scholar
  54. 54.
    Anders CK, Winer EP, Ford JM, Dent R, Silver DP, Sledge GW, Carey LA (2010) Poly(ADP-Ribose) polymerase inhibitor: “Targeted” therapy for triple-negative breast cancer. Clin Cancer Res 16:4702–4710PubMedCrossRefGoogle Scholar
  55. 55.
    Carden CP, Yap TA, Kaye SB (2010) PARP inhibition: targeting the Achilles’ heel of DNA repair to treat germline and sporadic ovarian cancers. Curr Opin Oncol 22:473–480PubMedCrossRefGoogle Scholar
  56. 56.
    Simon JA, Szankasi P, Nguyen DK, Ludlow C, Dunstan HM, Roberts CJ, Jensen EL, Hartwell LH, Friend SH (2000) Differential toxicities of anticancer agents among DNA repair and checkpoint mutants of Saccharomyces cerevisiae. Cancer Res 60:328–333PubMedGoogle Scholar
  57. 57.
    Canaani D (2009) Methodological approaches in application of synthetic lethality screening towards anticancer therapy. Br J Cancer 100:1213–1218PubMedCrossRefGoogle Scholar
  58. 58.
    Dunstan HM, Ludlow C, Goehle S, Cronk M, Szankasi P, Evan DRH, Simon JA, Lamb JR (2002) Cell-based assays for identification of novel double-strand break-inducing agents. J Natl Cancer Inst 94:88–94PubMedCrossRefGoogle Scholar
  59. 59.
    Seiple L, Jaruga P, Dizdaroglu M, Stivers JT (2006) Linking uracil base excision repair and 5-fluorouracil toxicity in yeast. Nucleic Acids Res 34:140–151PubMedCrossRefGoogle Scholar
  60. 60.
    Luo M, Kelley MR (2004) Inhibition of the human apurinic/apyrimidinic endonuclease (Ape1) repair activity and sensitization of breast cancer cells to DNA alkylating agents with lucanthone. Anticancer Res 24:2127–2134PubMedGoogle Scholar
  61. 61.
    Madhusudan S, Smart F, Shrimpton P, Parsons JL, Gardiner L, Houlbrook S, Talbot DC, Hammonds T, Freemont PA, Sternberg ME, Dianov GL, Hickson ID (2005) Isolation of a small molecule inhibitor of DNA base excision repair. Nucleic Acids Res 33:4711–4724PubMedCrossRefGoogle Scholar
  62. 62.
    Bapat A, Glass LTS, Luo M, Fishel ML, Long EC, Georgiadis MM, Kelley MR (2010) Novel Small-molecule inhibitor of apurinic/apyrimidinic endonuclease 1 blocks proliferation and reduces viability of glioblastoma cells. J Pharmacol Exp Ther 334:988–998PubMedCrossRefGoogle Scholar
  63. 63.
    Wilson DM III, Simeonov A (2010) Small molecule inhibitors of DNA repair nuclease activities of APE1. Cell Mol Life Sci 67:3621–3631PubMedCrossRefGoogle Scholar
  64. 64.
    Abbotts R, Madhusudan S (2010) Human AP endonuclease 1 (APE1): from mechanistic insights to druggable target in cancer. Cancer Treat Rev 36:425–435PubMedCrossRefGoogle Scholar
  65. 65.
    Soares DG, Poletto NP, Bonatto D, Salvador M, Schwartsmann G, Henriques JAP (2005) Low cytotoxicity of ecteinascidin 743 in yeast lacking the major endonucleolytic enzymes of base and nucleotide excision repair pathways. Biochem Pharmacol 70:59–69PubMedCrossRefGoogle Scholar
  66. 66.
    Matuo R, Sousa FG, Escargueil AE, Soares DG, Grivicich I, Saffi J, Larsen AK, Henriques JAP (2010) DNA repair pathways involved in repair of lesions induced by 5-fluorouracil and its active metabolite FdUMP. Biochem Pharmacol 79:147–153PubMedCrossRefGoogle Scholar
  67. 67.
    Weinert TA, Hartwell LH (1988) The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science 241:317–322PubMedCrossRefGoogle Scholar
  68. 68.
    Foiani M, Pellicioli A, Lopes M, Lucca C, Ferrari M, Liberi G, Muzi Falconi M, Plevani P (2000) DNA damage checkpoints and DNA replication controls in Saccharomyces cerevisiae. Mutat Res 451:187–196PubMedCrossRefGoogle Scholar
  69. 69.
    Poehlmann A, Roessner A (2010) Importance of DNA damage checkpoints in the pathogenesis of human cancers. Pathol Res Pract 206:591–601PubMedCrossRefGoogle Scholar
  70. 70.
    Jung PP, Fritsch ES, Blugeon C, Souciet JL, Potier S, Lemoine S, Schacherer J, Montigny J (2011) Ploidy influences cellular responses to gross chromosomal rearragements in Saccharomyces cerevisiae. BMC Genomics 12:331PubMedCrossRefGoogle Scholar
  71. 71.
    Putnam CD, Jaehnig EJ, Kolodner RD (2009) Perspectives on the DNA damage and replication checkpoint responses in Saccharomyces cerevisiae. DNA Repair 8:974–982PubMedCrossRefGoogle Scholar
  72. 72.
    Lucca C, Vanoli F, Cotta-Ramusino C, Pellicioli A, Liberi G, Haber J, Foiani M (2004) Checkpoint-mediated control of replisome-fork association and signalling in response to replication pausing. Oncogene 23:1206–1213PubMedCrossRefGoogle Scholar
  73. 73.
    Pellicioli A, Foiani M (2005) Signal transduction: how rad53 kinase is activated. Curr Biol 15:769–771CrossRefGoogle Scholar
  74. 74.
    Mordes DA, Glick GG, Zhao R, Cortez D (2008) TopBP1 activates ATR through ATRIP and PIKK regulatory domain. Genes Dev 22:1478–1489PubMedCrossRefGoogle Scholar
  75. 75.
    Mordes DA, Nam EA, Cortez D (2008) Dpb11 activates the Mec1–Ddc2 complex. Proc Natl Acad Sci USA 48:18730–18734CrossRefGoogle Scholar
  76. 76.
    Navadgi-Patil VM, Burgers PM (2009) A tale of two tails: activation of DNA damage checkpoint kinase Mec1/ATR by the 9–1-1 clamp and by Dpb11/TopBP1. DNA Repair 8:996–1003PubMedCrossRefGoogle Scholar
  77. 77.
    Murakami-Sekimata A, Huang D, Piening BD, Bangur C, Paulovich AG (2010) The Saccharomyces cerevisiae RAD9, RAD17 and RAD24 genes are required for suppression of mutagenic post-replicative repair during chronic DNA damage. DNA Repair 9:824–834PubMedCrossRefGoogle Scholar
  78. 78.
    Rupnik A, Lowndes NF, Grenon M (2010) MRN and the race to the break. Chromosoma 119:115–135PubMedCrossRefGoogle Scholar
  79. 79.
    Wang Y, Beerman TA, Kowalski D (2001) Antitumor drug adozelesin differentially affects active and silent origins of DNA replication in yeast checkpoint kinase mutants. Cancer Res 61:3787–3794PubMedGoogle Scholar
  80. 80.
    Zhang H, Siede W (2003) Validation of a novel assay for checkpoint responses: characterization of camptothecin derivatives in Saccharomyces cerevisiae. Mutat Res 527:37–48PubMedCrossRefGoogle Scholar
  81. 81.
    Brendel M, Bonatto D, Strauss M, Revers LF, Pungartnik C, Saffi J, Henriques JAP (2003) Role of PSO genes in repair of DNA damage of Saccharomyces cerevisiae. Mutat Res 544:179–193PubMedCrossRefGoogle Scholar
  82. 82.
    Cardone JM, Revers LF, Machado RM, Bonatto D, Brendel M, Henriques JAP (2006) Psoralen-sensitive mutant pso9-1 of Saccharomyces cerevisiae contains a mutant allele of the DNA damage checkpoint gene MEC3. DNA Repair 5:163–171PubMedCrossRefGoogle Scholar
  83. 83.
    McNeely S, Conti C, Sheikh T, Patel H, Zabludoff S, Pommier Y, Schwartz G, Tse A (2010) Chk1 inhibition after replicative stress activates a double strand break response mediated by ATM and DNA-dependent protein kinase. Cell Cycle 9:995–1004PubMedCrossRefGoogle Scholar
  84. 84.
    Sharma S, Kelly TK, Jones PA (2010) Epigenetics in cancer. Carcinogenesis 31:27–36PubMedCrossRefGoogle Scholar
  85. 85.
    Plass C (2002) Cancer epigenomics. Hum Mol Genet 11:2479–2488PubMedCrossRefGoogle Scholar
  86. 86.
    Kristensen LS, Nielsen HM, Hansen LL (2009) Epigenetics and cancer treatment. Eur J Pharmacol 625:131–142PubMedCrossRefGoogle Scholar
  87. 87.
    Andersson U, Erlandsson-Harris H, Yang H, Tracey KJ (2002) HMGB1 as a DNA-binding cytokine. J Leukoc Biol 72:1084–1091PubMedGoogle Scholar
  88. 88.
    Brezniceanu ML, Völp K, Bösse S, Solbach C, Lichter P, Joos S, Zörnig M (2003) HMGB1 inhibits cell death in yeast and mammalian cells and is abundantly expressed in human breast carcinoma. FASEB J 17:1295–1297PubMedGoogle Scholar
  89. 89.
    Egger G, Liang G, Aparicio A, Jones PA (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429:457–463PubMedCrossRefGoogle Scholar
  90. 90.
    Lafon-Hughes L, Di Tomaso MV, Méndez-Acuña L, Martinez-Lopez W (2008) Chromatin-remodelling mechanisms in cancer. Mutat Res 658:191–214PubMedCrossRefGoogle Scholar
  91. 91.
    Kaiser GS, Germann SM, Westergaard T, Lisby M (2011) Phenylbutyrate inhibits homologous recombination induced by camptothecin and methyl methanesulfonate. Mutat Res 713:64–75PubMedCrossRefGoogle Scholar
  92. 92.
    Bedalov A, Gatbonton T, Irvine WP, Gottschling DE, Simon JA (2001) Identification of a small molecule inhibitor of Sir2p. Proc Natl Acad Sci USA 98:15113–15118PubMedCrossRefGoogle Scholar
  93. 93.
    Hirao M, Posakony J, Nelson M, Hruby H, Jung M, Simon JA, Bedalov A (2003) Identification of selective inhibitors of NAD+ dependent deacetylases using phenotypic screens in yeast. J Biol Chem 278:52773–52782PubMedCrossRefGoogle Scholar
  94. 94.
    Weerasinghe SVW, Wambua M, Pflum MKH (2010) A histone deacetylase-dependent screen in yeast. Bioorg Med Chem 18:7586–7592PubMedCrossRefGoogle Scholar
  95. 95.
    Ataian Y, Krebs JE (2006) Five repair pathways in one context: chromatin modification during DNA repair. Biochem Cell Biol 84:490–504PubMedCrossRefGoogle Scholar
  96. 96.
    Escargueil AE, Soares DG, Salvador M, Larsen AK, Henriques JAP (2008) What histone code for DNA repair? Mutat Res Rev 658:259–270CrossRefGoogle Scholar
  97. 97.
    Van Attikum H, Gasser SM (2005) The histone code at DNA breaks: a guide to repair? Nat Rev Mol Cell Biol 6:757–765PubMedCrossRefGoogle Scholar
  98. 98.
    Labazi M, Jaafar L, Flores-Rozas H (2009) Modulation of the DNA-binding activity of Saccharomyces cerevisiae MSH2–MSH6 complex by the high-mobility group protein NHP6A, in vitro. Nucleic Acids Res 37:7581–7589PubMedCrossRefGoogle Scholar
  99. 99.
    Resnick MA, Cox BS (2000) Yeast as an honorary mammal. Mutat Res 451:1–11PubMedCrossRefGoogle Scholar
  100. 100.
    Kolaczkowski M, Goffeau A (1997) Active efflux by multidrug transporters as one of the strategies to evade chemotherapy and novel practical implications of yeast pleiotropic drug resistance. Pharmacol Ther 76:219–242PubMedCrossRefGoogle Scholar
  101. 101.
    Nitiss J, Wang JC (1988) DNA topoisomerase-targeting antitumor drugs can be studied in yeast. Proc Natl Acad Sci USA 85:7501–7505PubMedCrossRefGoogle Scholar
  102. 102.
    Reid RJD, Kauh EA, Bjornsti MA (1997) Camptothecin sensitivity is mediated by the pleotropic drug resistance network in yeast. J Biol Chem 272:12091–12099PubMedCrossRefGoogle Scholar
  103. 103.
    Kaur R, Bachhawatt AK (1999) The yeast multidrug resistance pump, Pdr5p, confers reduced drug resistance in erg mutants of Saccharomyces cerevisiae. Microbiology 145:809–818PubMedCrossRefGoogle Scholar
  104. 104.
    Hlavacek O, Kucerova H, Harant K, Palkova Z, Vachova L (2009) Putative role for ABC multidrug exporters in yeast quorum sensing. FEBS Lett 583:1107–1113PubMedCrossRefGoogle Scholar
  105. 105.
    Bjornsti MA (2002) Cancer therapeutics in yeast. Cancer Cell 2:267–273PubMedCrossRefGoogle Scholar
  106. 106.
    Flaman JM, Frebourg T, Moreau V, Charbonnier F, Martin C, Chappuis P, Sappino AP, Limacher IM, Bron L, Benhattar J (1995) A simple p53 functional assay for screening cell lines, blood and tumors. Proc Natl Acad Sci USA 92:3963–3967PubMedCrossRefGoogle Scholar
  107. 107.
    Inga A, Resnick MA (2001) Novel human p53 mutation that are toxic to yeast can enhance transactivation of specific promoters and reactivate tumor p53 mutants. Oncogene 20:3409–3419PubMedCrossRefGoogle Scholar
  108. 108.
    Jin C, Reed JC (2002) Yeast and apoptosis. Nat Rev Mol Cell Biol 3:453–459PubMedCrossRefGoogle Scholar
  109. 109.
    Xu Q, Reed JC (1998) Bax inhibitor-1, a mammalian apoptosis suppressor identified by functional screening in yeast. Mol Cell 1:337–346PubMedCrossRefGoogle Scholar
  110. 110.
    Sato T, Hanada M, Bodrug S, Irie S, Iwama N, Boise LH, Thompson CB, Golemis E, Fong L, Wang HG, Reed JC (1994) Interactions among members of the Bcl-2 protein family analyzed with a yeast two-hybrid system. Proc Natl Acad Sci USA 91:9238–9242PubMedCrossRefGoogle Scholar
  111. 111.
    Hanada M, Aimé-Sempé C, Sato T, Reed JC (1995) Structure-function analysis of Bcl-2 protein. Identification of conserved domains important for homodimerization with Bcl-2 and heterodimerization with Bax. J Biol Chem 270:11962–11969PubMedCrossRefGoogle Scholar
  112. 112.
    Lynch T, Price A (2007) The effect of cytochrome P450 metabolism on drug response, interactions and adverse effects. Am Fam Physician 76:391–396PubMedGoogle Scholar
  113. 113.
    Guo Y, Breeden LL, Zarbl H, Preston BD, Eaton DL (2005) Expression of a human cytochrome p450 in yeast permits analysis of pathways for response to and repair of aflatoxin-induced DNA damage. Mol Cell Biol 25:5823–5833PubMedCrossRefGoogle Scholar
  114. 114.
    Purnapatre K, Khattar SK, Saini KS (2008) Cytochrome P450s in the development of target-based anticancer drugs. Cancer Lett 259:1–15PubMedCrossRefGoogle Scholar
  115. 115.
    Del Carratore MR, Mezzatesta C, Hidestrand M, Neve P, Amato G, Gervasi PG (2000) Cloning and expression of rat CYP2E1 in Saccharomyces cerevisiae: detection of genotoxicity of N-alkylformamides. Environ Mol Mutagen 36:97–104PubMedCrossRefGoogle Scholar
  116. 116.
    Masimirembwa CM, Otter C, Berg M, Jönsson M, Leidvik B, Jonsson E, Johansson T, Bäckman A, Edlund A, Andersson TB (1999) Heterologous expression and kinetic characterization of human cytochrome P-450: validation of a pharmaceutical tool for drug metabolism research. Drug Metab Dispos 27:1117–1122PubMedGoogle Scholar
  117. 117.
    Peters FT, Bureik M, Maurer HH (2009) Biotechnological synthesis of drug metabolites using human cytochrome P450 isozymes heterologously expressed in fission yeast. Bioanalysis 1:821–830PubMedCrossRefGoogle Scholar
  118. 118.
    Longley DB, Harkin DP, Johnston PG (2003) 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 3:330–338PubMedCrossRefGoogle Scholar
  119. 119.
    Ladner RD (2001) The role of dUTPase and uracil-DNA repair in cancer chemotherapy. Curr Protein Pept Sci 2:361–370PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Renata Matuo
    • 1
    • 2
    • 3
    • 4
  • Fabrício G. Sousa
    • 1
    • 2
    • 3
    • 4
  • Daniele G. Soares
    • 2
    • 3
    • 4
  • Diego Bonatto
    • 5
  • Jenifer Saffi
    • 1
    • 6
  • Alexandre E. Escargueil
    • 2
    • 3
    • 4
  • Annette K. Larsen
    • 2
    • 3
    • 4
  • João Antonio Pêgas Henriques
    • 1
    • 7
    Email author
  1. 1.Departamento de Biofísica, Centro de BiotecnologiaUniversidade Federal do Rio Grande do Sul, UFRGSPorto AlegreBrazil
  2. 2.Laboratory of Cancer Biology and TherapeuticsCentre de Recherche Saint-AntoineParisFrance
  3. 3.Institut National de la Santé et de la Recherche Médicale U893ParisFrance
  4. 4.Université Pierre et Marie Curie, UMPC06ParisFrance
  5. 5.Departamento de Biologia Molecular, Centro de BiotecnologiaUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
  6. 6.Departamento de Ciências Básica da Saúde/BioquímicaUniversidade Federal de Ciências da Saúde de Porto AlegrePorto AlegreBrazil
  7. 7.Departamento de Ciências Biomédicas, Instituto de BiotecnologiaUniversidade de Caxias do Sul, UCSCaxias do SulBrazil

Personalised recommendations