Skip to main content

Advertisement

Log in

Gene therapy with RNAi targeting UHRF1 driven by tumor-specific promoter inhibits tumor growth and enhances the sensitivity of chemotherapeutic drug in breast cancer in vitro and in vivo

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

UHRF1, also known as ICBP90 (inverted CCAAT box binding protein 90) in human, is a nuclear protein that acts as a fundamental regulator in cell proliferation and maintains DNA methylation. It is reported that UHRF1 is obviously upregulated in various human malignancies, but unchanged in differentiated tissues, suggesting that UHRF1 plays a crucial role in carcinogenesis and can be a useful anticancer drug target. In this study, we explored whether UHRF1 can be a therapeutic target for human breast carcinoma. We successfully constructed the tumor-specific shRNA expression vector driven by survivin promoter targeting UHRF1 gene. The tumor-specific RNA interference system efficiently and specifically knocked down UHRF1 expression, induced the apoptosis of tumor cells, and enhanced chemosensitivity of tumor cells to cisplatinum, but not in normal cells in vitro and in vivo. Therefore, the survivin promoter-driving shRNA expression system targeting UHRF1 may play a vital and potential role for the treatment of specificity and high efficacy in human breast carcinomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jeanblanc M, Mousli M, Hopfner R, Bathami K, Martinet N, Abbady AQ, Siffert JC, Mathieu E, Muller CD, Bronner C (2005) The retinoblastoma gene and its product are targeted by ICBP90: a key mechanism in the G1/S transition during the cell cycle. Oncogene 24(49):7337–7345

    Article  PubMed  CAS  Google Scholar 

  2. Bonapace IM, Latella L, Papait R, Nicassio F, Sacco A, Muto M, Crescenzi M, Di Fiore PP (2002) Np95 is regulated by E1A during mitotic reactivation of terminally differentiated cells and is essential for S phase entry. J Cell Biol 157(6):909–914

    Google Scholar 

  3. Sakai A, Kikuchi Y, Muroi M, Masui T, Furihata C, Uchida E, Takatori K, Tanamoto K (2003) Overexpression of NP95 mRNA by tumor promoters in the promotion phase of a two-stage BALB/3T3 cell transformation assay. Biol Pharm Bull 26(3):347–351

    Article  PubMed  CAS  Google Scholar 

  4. Papait R, Pistore C, Negri D, Pecoraro D, Cantarini L, Bonapace IM (2007) Np95 is implicated in pericentromeric heterochromatin replication and in major satellite silencing. Mol Biol Cell 18(3):1098–106

    Google Scholar 

  5. Bostick M, Kim JK, Estève PO, Clark A, Pradhan S, Jacobsen SE (2007) UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 317(5845):1760–1764

    Google Scholar 

  6. Sharif J, Muto M, Takebayashi S, Suetake I, Iwamatsu A, Endo TA, Shinga J, Mizutani-Koseki Y, Toyoda T, Okamura K, Tajima S, Mitsuya K, Okano M, Koseki H (2007) The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 450(7171):908–912

    Article  PubMed  CAS  Google Scholar 

  7. Crnogorac-Jurcevic T, Gangeswaran R, Bhakta V, Capurso G, Lattimore S, Akada M, Sunamura M, Prime W, Campbell F, Brentnall TA, Costello E, Neoptolemos J, Lemoine NR (2005) Proteomic analysis of chronic pancreatitis and pancreatic adenocarcinoma. Gastroenterology 129(5):1454–1463

    Article  PubMed  CAS  Google Scholar 

  8. Lorenzato M, Caudroy S, Bronner C, Evrard G, Simon M, Durlach A, Birembaut P, Clavel C (2005) Cell cycle and/or proliferation markers: what is the best method to discriminate cervical high-grade lesions. Hum Pathol 36(10):1101–1107

    Article  PubMed  CAS  Google Scholar 

  9. Mousli M, Hopfner R, Abbady AQ, Monté D, Jeanblanc M, Oudet P, Louis B, Bronner C (2003) ICBP90 belongs to a new family of proteins with an expression that is deregulated in cancer cells. Br J Cancer 89(1):120–127

    Article  PubMed  CAS  Google Scholar 

  10. Oba-Shinjo SM, Bengtson MH, Winnischofer SM, Colin C, Vedoy CG, de Mendonça Z, Marie SK, Sogayar MC (2005) Identification of novel differentially expressed genes in human astrocytomas by cDNA representational difference analysis. Brain Res Mol Brain Res 140(1–2):25–33

    Article  PubMed  CAS  Google Scholar 

  11. Jenkins Y, Markovtsov V, Lang W, Sharma P, Pearsall D, Warner J, Franci C, Huang B, Huang J, Yam GC, Vistan JP, Pali E, Vialard J, Janicot M, Lorens JB, Payan DG, Hitoshi Y (2005) Critical role of the ubiquitin ligase activity of UHRF1, a nuclear RING finger protein, in tumor cell growth. Mol Biol Cell 16(12):5621–5629

    Article  PubMed  CAS  Google Scholar 

  12. Unoki M, Daigo Y, Koinuma J, Tsuchiya E, Hamamoto R, Nakamura Y (2010) UHRF1 is a novel diagnostic marker of lung cancer. Br J Cancer 103(2):217–222

    Article  PubMed  CAS  Google Scholar 

  13. Unoki M, Nishidate T, Nakamura Y (2004) ICBP90, an E2F–1 target, recruits HDAC1 and binds to methyl-CpG through its SRA domain. Oncogene 23(46):7601–7610

    Article  PubMed  CAS  Google Scholar 

  14. Kim JK, Estève PO, Jacobsen SE, Pradhan S (2009) UHRF1 binds G9a and participates in p21 transcriptional regulation in mammalian cells. Nucleic Acids Res 37(2):493–505

    Article  PubMed  CAS  Google Scholar 

  15. Unoki M, Brunet J, Mousli M (2009) Drug discovery targeting epigenetic codes: the great potential of UHRF1, which links DNA methylation and histone modifications, as a drug target in cancers and toxoplasmosis. Biochem Pharmacol 78(10):1279–1288

    Article  PubMed  CAS  Google Scholar 

  16. Mistry H, Tamblyn L, Butt H, Sisgoreo D, Gracias A, Larin M, Gopalakrishnan K, Hande MP, McPherson JP (2010) UHRF1 is a genome caretaker that facilitates the DNA damage response to gamma-irradiation. Genome Integr 1(1):7

    Google Scholar 

  17. Li X, Meng Q, Rosen EM, Fan S (2011) UHRF1 confers radioresistance to human breast cancer cells. Int J Radiat Biol 87(3):263–273

    Article  PubMed  CAS  Google Scholar 

  18. Jin W, Liu Y, Xu SG, Yin WJ, Li JJ, Yang JM, Shao ZM (2010) UHRF1 inhibits MDR1 gene transcription and sensitizes breast cancer cells to anticancer drugs. Breast Cancer Res Treat 124(1):39–48

    Article  PubMed  CAS  Google Scholar 

  19. Sui G, Soohoo C, Affarel B, Gay F, Shi Y, Forrester WC, Shi Y (2002) A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc Natl Acad Sci USA 99(8):5515–5520

    Article  PubMed  CAS  Google Scholar 

  20. Li F (2005) Role of survivin and its splice variants in tumorigenesis. Br J Cancer 92(2):212–216

    PubMed  CAS  Google Scholar 

  21. Zaffaroni N, Pennati M, Daidone MG (2005) Survivin as a target for new anticancer interventions. J Cell Mol Med 9(2):360–372

    Article  PubMed  CAS  Google Scholar 

  22. Wu B, Wang Y, Ren JH et al (2005) Molecular cloning of survivin gene promoter and detecting its specific activity in Hela cell. Chin J Cancer Biother 12:116–119

    Google Scholar 

  23. Chen JS, Liu JC, Shen L et al (2004) Cancer-specific activation of the survivin promoter and its potential use in gene therapy. Cancer Gene Ther 11:740–747

    Article  PubMed  CAS  Google Scholar 

  24. Muto M, Kanari Y, Kubo E, Takabe T, Kurihara T, Fujimori A, Tatsumi K (2002) Targeted disruption of Np95 gene renders murine embryonic stem cells hypersensitive to DNA damaging agents and DNA replication blocks. J Biol Chem 277(37):34549–34555

    Article  PubMed  CAS  Google Scholar 

  25. Hopfner R, Mousli M, Jeltsch JM, Voulgaris A, Lutz Y, Marin C, Bellocq JP, Oudet P, Bronner C (2000) ICBP90, a novel human CCAAT binding protein, involved in the regulation of topoisomerase IIalpha expression. Cancer Res 60(1):121–128

    PubMed  CAS  Google Scholar 

  26. Rao MK, Wilkinson MF (2006) Tissue-specific and cell type-specific RNA interference in vivo. Nat Protoc 1(3):1494–1501

    Article  PubMed  CAS  Google Scholar 

  27. Tiscornia G, Singer O, Ikawa M, Verma IM (2003) A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proc Natl Acad Sci USA 100(4):1844–1848

    Article  PubMed  CAS  Google Scholar 

  28. Sledge GW Jr, Loehrer PJ Sr, Roth BJ, Einhorn LH (1988) Cisplatin as first-line therapy for metastatic breast cancer. J Clin Oncol 6(12):1811–1814

    PubMed  Google Scholar 

  29. Crown JP (2001) The platinum agents: a role in breast cancer treatment. Semin Oncol 28(1 Suppl 3):28–37

    Google Scholar 

  30. Tien AL, Senbanerjee S, Kulkarni A, Mudbhary R, Goudreau B, Ganesan S, Sadler KC, Ukomadu C (2011) UHRF1 depletion causes a G2/M arrest, activation of DNA damage response and apoptosis. Biochem J 435(1):175–185

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Thanks to every one of the Department of Clinical Laboratory for their sincere help and technical support. This study was supported by grants from National Natural Science Foundation of China (30901579).

Conflict of interest

The authors declare that no conflict of interest exits in the submission of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang Huizhong.

Additional information

Lin Fang and Li Shanqu should be regarded as joint first authors for equal contributions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, L., Shanqu, L., Ping, G. et al. Gene therapy with RNAi targeting UHRF1 driven by tumor-specific promoter inhibits tumor growth and enhances the sensitivity of chemotherapeutic drug in breast cancer in vitro and in vivo. Cancer Chemother Pharmacol 69, 1079–1087 (2012). https://doi.org/10.1007/s00280-011-1801-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-011-1801-y

Keywords

Navigation