Skip to main content

Advertisement

Log in

A randomized phase II study of two doses of vorinostat in combination with 5-FU/LV in patients with refractory colorectal cancer

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Background

Vorinostat is synergistic with 5-FU in vitro and in vivo models. A combination of these two agents was associated with clinical activity in 5-FU refractory colorectal cancer patients in a phase I clinical trial, therefore warranting the conduct of this prospective phase II study.

Patients and methods

Patients with refractory metastatic colorectal cancer were randomized in a two-stage design to receive vorinostat at 800 or 1,400 mg/day once a day × 3, every 2 weeks. 5-FU, preceded by leucovorin, was administered as a bolus followed by a 46-h infusion on days 2 and 3 of vorinostat. A pre-specified 2-month progression-free survival (PFS) rate of 27/43 patients per arm was needed to deem an arm interesting for further investigation.

Results

The high-dose vorinostat arm did not reach the needed efficacy endpoint at completion of the first stage, with only 8 out of 15 patients being alive and progression free at 2 months. The low-dose vorinostat arm proceeded to accrue 43 patients with a 2-month PFS rate of 53% (23 out 43), including one partial response. The median PFS and overall survival on the low-dose arm were 2.4 and 6.5 months, respectively. Both treatment arms were well tolerated. No differences were noted in the pharmacokinetics of vorinostat at the 800- or 1,400-mg dose-levels, suggesting bioavailability saturation.

Conclusions

While the addition of vorinostat to 5-FU resulted in 1 partial response and in some disease stabilizations, the limited activity does not warrant the unselected use of this combination in chemotherapy-refractory colorectal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wilson AJ et al (2006) Histone deacetylase 3 (HDAC3) and other class I HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer. J Biol Chem 281(19):13548–13558

    Article  PubMed  CAS  Google Scholar 

  2. Archer SY et al (2005) The histone deacetylase inhibitor butyrate downregulates cyclin B1 gene expression via a p21/WAF-1-dependent mechanism in human colon cancer cells. Am J Physiol Gastrointest Liver Physiol 289(4):G696–G703

    PubMed  CAS  Google Scholar 

  3. Nawrocki ST et al (2007) Histone deacetylase inhibitors enhance lexatumumab-induced apoptosis via a p21Cip1-dependent decrease in survivin levels. Cancer Res 67(14):6987–6994

    Article  PubMed  CAS  Google Scholar 

  4. Xu WS et al (2005) Induction of polyploidy by histone deacetylase inhibitor: a pathway for antitumor effects. Cancer Res 65(17):7832–7839

    PubMed  CAS  Google Scholar 

  5. Place RF, Noonan EJ, Giardina C (2005) HDAC inhibition prevents NF-kappa B activation by suppressing proteasome activity: down-regulation of proteasome subunit expression stabilizes I kappa B alpha. Biochem Pharmacol 70(3):394–406

    Article  PubMed  CAS  Google Scholar 

  6. Dokmanovic M, Marks PA (2005) Prospects: histone deacetylase inhibitors. J Cell Biochem 96(2):293–304

    Article  PubMed  CAS  Google Scholar 

  7. Kim DH, Kim M, Kwon HJ (2003) Histone deacetylase in carcinogenesis and its inhibitors as anti-cancer agents. J Biochem Mol Biol 36(1):110–119

    Article  PubMed  CAS  Google Scholar 

  8. Vigushin DM, Coombes RC (2002) Histone deacetylase inhibitors in cancer treatment. Anticancer Drugs 13(1):1–13

    Article  PubMed  CAS  Google Scholar 

  9. Liu T et al (2006) Histone deacetylase inhibitors: multifunctional anticancer agents. Cancer Treat Rev 32(3):157–165

    Article  PubMed  Google Scholar 

  10. Deroanne CF et al (2002) Histone deacetylases inhibitors as anti-angiogenic agents altering vascular endothelial growth factor signaling. Oncogene 21(3):427–436

    Article  PubMed  CAS  Google Scholar 

  11. Conti C et al (2010) Inhibition of histone deacetylase in cancer cells slows down replication forks, activates dormant origins, and induces DNA damage. Cancer Res 70(11):4470–4480

    Article  PubMed  CAS  Google Scholar 

  12. Owonikoko TK et al (2010) Vorinostat increases carboplatin and paclitaxel activity in non-small-cell lung cancer cells. Int J Cancer 126(3):743–755

    Article  PubMed  CAS  Google Scholar 

  13. Kirschbaum M et al (2011) Phase II study of vorinostat for treatment of relapsed or refractory indolent non-Hodgkin’s lymphoma and mantle cell lymphoma. J Clin Oncol 29(9):1198–1203

    Article  PubMed  CAS  Google Scholar 

  14. Duvic M et al (2007) Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood 109(1):31–39

    Article  PubMed  CAS  Google Scholar 

  15. Traynor AM et al (2009) Vorinostat (NSC# 701852) in patients with relapsed non-small cell lung cancer: a Wisconsin Oncology Network phase II study. J Thorac Oncol 4(4):522–526

    Article  PubMed  Google Scholar 

  16. Galanis E et al (2009) Phase II trial of vorinostat in recurrent glioblastoma multiforme: a north central cancer treatment group study. J Clin Oncol 27(12):2052–2058

    Article  PubMed  CAS  Google Scholar 

  17. Luu TH et al (2008) A phase II trial of vorinostat (suberoylanilide hydroxamic acid) in metastatic breast cancer: a California Cancer Consortium study. Clin Cancer Res 14(21):7138–7142

    Article  PubMed  CAS  Google Scholar 

  18. Vansteenkiste J et al (2008) Early phase II trial of oral vorinostat in relapsed or refractory breast, colorectal, or non-small cell lung cancer. Invest New Drugs 26(5):483–488

    Article  PubMed  CAS  Google Scholar 

  19. Modesitt SC et al (2008) A phase II study of vorinostat in the treatment of persistent or recurrent epithelial ovarian or primary peritoneal carcinoma: a Gynecologic Oncology Group study. Gynecol Oncol 109(2):182–186

    Article  PubMed  CAS  Google Scholar 

  20. Blumenschein GR Jr et al (2008) Phase II trial of the histone deacetylase inhibitor vorinostat (Zolinza, suberoylanilide hydroxamic acid, SAHA) in patients with recurrent and/or metastatic head and neck cancer. Invest New Drugs 26(1):81–87

    Article  PubMed  CAS  Google Scholar 

  21. Krug LM et al (2006) Potential role of histone deacetylase inhibitors in mesothelioma: clinical experience with suberoylanilide hydroxamic acid. Clin Lung Cancer 7(4):257–261

    Article  PubMed  Google Scholar 

  22. Fazzone W et al (2009) Histone deacetylase inhibitors suppress thymidylate synthase gene expression and synergize with the fluoropyrimidines in colon cancer cells. Int J Cancer 125(2):463–473

    Article  PubMed  CAS  Google Scholar 

  23. Cheriyath V et al (2011) Potentiation of apoptosis by histone deacetylase inhibitors and doxorubicin combination: cytoplasmic cathepsin B as a mediator of apoptosis in multiple myeloma. Br J Cancer 104(6):957–967

    Article  PubMed  CAS  Google Scholar 

  24. Arnold NB et al (2007) The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces growth inhibition and enhances gemcitabine-induced cell death in pancreatic cancer. Clin Cancer Res 13(1):18–26

    Article  PubMed  CAS  Google Scholar 

  25. Shi YK et al (2010) The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces growth inhibition and enhances taxol-induced cell death in breast cancer. Cancer Chemother Pharmacol 66(6):1131–1140

    Article  PubMed  Google Scholar 

  26. Suzuki M et al (2009) Enhancement of cisplatin cytotoxicity by SAHA involves endoplasmic reticulum stress-mediated apoptosis in oral squamous cell carcinoma cells. Cancer Chemother Pharmacol 64(6):1115–1122

    Article  PubMed  CAS  Google Scholar 

  27. Ramalingam SS et al (2010) Carboplatin and Paclitaxel in combination with either vorinostat or placebo for first-line therapy of advanced non-small-cell lung cancer. J Clin Oncol 28(1):56–62

    Article  PubMed  CAS  Google Scholar 

  28. Munster PN et al (2009) Phase I trial of vorinostat and doxorubicin in solid tumours: histone deacetylase 2 expression as a predictive marker. Br J Cancer 101(7):1044–1050

    Article  PubMed  CAS  Google Scholar 

  29. Wilson PM et al (2010) A phase I/II trial of vorinostat in combination with 5-fluorouracil in patients with metastatic colorectal cancer who previously failed 5-FU-based chemotherapy. Cancer Chemother Pharmacol 65(5):979–988

    Article  PubMed  CAS  Google Scholar 

  30. Fakih MG et al (2010) A phase I, pharmacokinetic, and pharmacodynamic study of two schedules of vorinostat in combination with 5-fluorouracil and leucovorin in patients with refractory solid tumors. Clin Cancer Res 16(14):3786–3794

    Article  PubMed  CAS  Google Scholar 

  31. Fakih MG et al (2009) A phase I, pharmacokinetic and pharmacodynamic study on vorinostat in combination with 5-fluorouracil, leucovorin, and oxaliplatin in patients with refractory colorectal cancer. Clin Cancer Res 15(9):3189–3195

    Article  PubMed  CAS  Google Scholar 

  32. Eisenhauer EA et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45(2):228–247

    Article  PubMed  CAS  Google Scholar 

  33. Munster PN et al (2009) A single supratherapeutic dose of vorinostat does not prolong the QTc interval in patients with advanced cancer. Clin Cancer Res 15(22):7077–7084

    Article  PubMed  CAS  Google Scholar 

  34. Ramalingam SS et al (2007) Phase I and pharmacokinetic study of vorinostat, a histone deacetylase inhibitor, in combination with carboplatin and paclitaxel for advanced solid malignancies. Clin Cancer Res 13(12):3605–3610

    Article  PubMed  CAS  Google Scholar 

  35. Tie J et al (2011) KRAS mutation is associated with lung metastasis in patients with curatively resected colorectal cancer. Clin Cancer Res 17(5):1122–1130

    Article  PubMed  CAS  Google Scholar 

  36. Olsen EA et al (2007) Phase IIb multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous T-cell lymphoma. J Clin Oncol 25(21):3109–3115

    Article  PubMed  CAS  Google Scholar 

  37. Glaser KB et al (2003) Gene expression profiling of multiple histone deacetylase (HDAC) inhibitors: defining a common gene set produced by HDAC inhibition in T24 and MDA carcinoma cell lines. Mol Cancer Ther 2(2):151–163

    Article  PubMed  CAS  Google Scholar 

  38. Jonker DJ et al (2007) Cetuximab for the treatment of colorectal cancer. N Engl J Med 357(20):2040–2048

    Article  PubMed  CAS  Google Scholar 

  39. Rothenberg ML et al (2003) Superiority of oxaliplatin and fluorouracil-leucovorin compared with either therapy alone in patients with progressive colorectal cancer after irinotecan and fluorouracil-leucovorin: interim results of a phase III trial. J Clin Oncol 21(11):2059–2069

    Article  PubMed  CAS  Google Scholar 

  40. Rougier P et al (1998) Randomised trial of irinotecan versus fluorouracil by continuous infusion after fluorouracil failure in patients with metastatic colorectal cancer. Lancet 352(9138):1407–1412

    Article  PubMed  CAS  Google Scholar 

  41. Di Gennaro E et al (2009) Modulation of thymidilate synthase and p53 expression by HDAC inhibitor vorinostat resulted in synergistic antitumor effect in combination with 5FU or raltitrexed. Cancer Biol Ther 8(9):782–791

    Article  PubMed  CAS  Google Scholar 

  42. Kim MS et al (2003) Inhibition of histone deacetylase increases cytotoxicity to anticancer drugs targeting DNA. Cancer Res 63(21):7291–7300

    PubMed  CAS  Google Scholar 

  43. Novotny-Diermayr V et al (2010) SB939, a novel potent and orally active histone deacetylase inhibitor with high tumor exposure and efficacy in mouse models of colorectal cancer. Mol Cancer Ther 9(3):642–652

    Article  PubMed  CAS  Google Scholar 

  44. Kelly WK et al (2003) Phase I clinical trial of histone deacetylase inhibitor: suberoylanilide hydroxamic acid administered intravenously. Clin Cancer Res 9(10 Pt 1):3578–3588

    PubMed  CAS  Google Scholar 

  45. Klampfer L et al (2007) Histone deacetylase inhibitors induce cell death selectively in cells that harbor activated kRasV12: the role of signal transducers and activators of transcription 1 and p21. Cancer Res 67(18):8477–8485

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the late Dr. Merrill Egorin. Dr. Egorin made major contributions to the earlier vorinostat plus 5-FU phase I clinical trial, which formed the basis for the conduct of this phase II study. Dr. Egorin developed the clinical assay for vorinostat and his laboratory performed all vorinostat pharmacokinetic measurements on this study. This study was supported by a research grant from Merck Sharp and Dohme Corp.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Fakih.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fakih, M.G., Groman, A., McMahon, J. et al. A randomized phase II study of two doses of vorinostat in combination with 5-FU/LV in patients with refractory colorectal cancer. Cancer Chemother Pharmacol 69, 743–751 (2012). https://doi.org/10.1007/s00280-011-1762-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-011-1762-1

Keywords

Navigation