Skip to main content

Advertisement

Log in

Furanodienone induces cell cycle arrest and apoptosis by suppressing EGFR/HER2 signaling in HER2-overexpressing human breast cancer cells

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Overexpression of EGFR and HER2 is seen in breast cancers and results in poor prognosis and decreased patient survival. Clinically, EGFR and HER2 are effective therapeutic targets. The objective of this study is to investigate the in vitro effects of furanodienone, an active chemical component isolated from Rhizoma Curcumae, on the activation of EGFR/HER2 signaling, cell cycle, and apoptosis in HER2-overexpressing BT474 and SKBR3 cells.

Methods

Cell growth was assessed by SRB protein assay. Cell cycle analysis was carried out by flow cytometry, and apoptosis was observed by Annexin V and DAPI staining. Effects of furanodienone on the activation of EGFR/HER2 signaling-related proteins were analyzed by western blotting.

Results

Furanodienone inhibited cell growth in BT474 and SKBR3 cells. Furanodienone caused G1 arrest in BT474 cells and induced apoptosis in SKBR3 cells. Furanodienone interfered with EGFR/HER2 signaling in treated cells as shown by decreases in phosphorylated EGFR, HER2, Akt, Gsk3β and an increase in p27kip1 protein. Accordingly, furanodienone inhibited EGF-induced phosphorylation of EGFR, HER2, Akt, and Gsk3β. EGFR-specific siRNA knockdown did not affect the cell growth inhibitory effect of furanodienone. On the contrary, specific siRNA knockdown of HER2 increased cellular resistance to furanodienone toxicity. In HER-2-deficient MDA-MB-231 cells, the transfection and expression of HER2 increased the sensitivity of cells to furanodienone toxicity.

Conclusion

Furanodienone inhibited EGFR/HER2 signaling pathway in BT474 and SKBR3 cells. More importantly, the effect of furanodienone was specifically dependent on HER2, but not EGFR, expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Press MF, Lenz HJ (2007) EGFR, HER2 and VEGF pathways: validated targets for cancer treatment. Drugs 67(14):2045–2075

    Article  PubMed  CAS  Google Scholar 

  2. Harari PM (2004) Epidermal growth factor receptor inhibition strategies in oncology. Endocr Relat Cancer 11(4):689–708

    Article  PubMed  CAS  Google Scholar 

  3. Krause DS, Van Etten RA (2005) Tyrosine kinases as targets for cancer therapy. N Engl J Med 353(2):172–187

    Article  PubMed  CAS  Google Scholar 

  4. Prenzel N, Fischer OM, Streit S, Hart S, Ullrich A (2001) The epidermal growth factor receptor family as a central element for cellular signal transduction and diversification. Endocr Relat Cancer 8(1):11–31

    Article  PubMed  CAS  Google Scholar 

  5. Zandi R, Larsen AB, Andersen P, Stockhausen MT, Poulsen HS (2007) Mechanisms for oncogenic activation of the epidermal growth factor receptor. Cell Signal 19(10):2013–2023

    Article  PubMed  CAS  Google Scholar 

  6. Olayioye MA, Neve RM, Lane HA, Hynes NE (2000) The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J 19(13):3159–3167

    Article  PubMed  CAS  Google Scholar 

  7. Bazley LA, Gullick WJ (2005) The epidermal growth factor receptor family. Endocr Relat Cancer 12(Suppl 1):S17–S27

    Article  PubMed  CAS  Google Scholar 

  8. Yarden Y (2001) The EGFR family and its ligands in human cancer. signalling mechanisms and therapeutic opportunities. Eur J Cancer 37(Suppl 4):S3–S8

    Article  PubMed  CAS  Google Scholar 

  9. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ (2008) Cancer statistics, 2008. CA Cancer J Clin 58(2):71–96

    Article  PubMed  Google Scholar 

  10. Nunes RA, Harris LN (2002) The HER2 extracellular domain as a prognostic and predictive factor in breast cancer. Clin Breast Cancer 3(2):125–135 (discussion 136–127)

    Google Scholar 

  11. Abd El-Rehim DM, Pinder SE, Paish CE, Bell JA, Rampaul RS, Blamey RW, Robertson JF, Nicholson RI, Ellis IO (2004) Expression and co-expression of the members of the epidermal growth factor receptor (EGFR) family in invasive breast carcinoma. Br J Cancer 91(8):1532–1542

    Article  PubMed  CAS  Google Scholar 

  12. Hudelist G, Singer CF, Manavi M, Pischinger K, Kubista E, Czerwenka K (2003) Co-expression of ErbB-family members in human breast cancer: Her-2/neu is the preferred dimerization candidate in nodal-positive tumors. Breast Cancer Res Treat 80(3):353–361

    Article  PubMed  CAS  Google Scholar 

  13. Bernard-Marty C, Lebrun F, Awada A, Piccart MJ (2006) Monoclonal antibody-based targeted therapy in breast cancer: current status and future directions. Drugs 66(12):1577–1591

    Article  PubMed  CAS  Google Scholar 

  14. Scaltriti M, Verma C, Guzman M, Jimenez J, Parra JL, Pedersen K, Smith DJ, Landolfi S, Ramon y Cajal S, Arribas J, Baselga J (2009) Lapatinib, a HER2 tyrosine kinase inhibitor, induces stabilization and accumulation of HER2 and potentiates trastuzumab-dependent cell cytotoxicity. Oncogene 28(6):803–814

    Article  PubMed  CAS  Google Scholar 

  15. Yarden Y (2001) Biology of HER2 and its importance in breast cancer. Oncology 61(Suppl 2):1–13

    Article  PubMed  CAS  Google Scholar 

  16. Carlsson J, Nordgren H, Sjostrom J, Wester K, Villman K, Bengtsson NO, Ostenstad B, Lundqvist H, Blomqvist C (2004) HER2 expression in breast cancer primary tumours and corresponding metastases. Original data and literature review. Br J Cancer 90(12):2344–2348

    PubMed  CAS  Google Scholar 

  17. Menard S, Pupa SM, Campiglio M, Tagliabue E (2003) Biologic and therapeutic role of HER2 in cancer. Oncogene 22(42):6570–6578

    Article  PubMed  CAS  Google Scholar 

  18. Jones KL, Buzdar AU (2009) Evolving novel anti-HER2 strategies. Lancet Oncol 10(12):1179–1187

    Article  PubMed  CAS  Google Scholar 

  19. Yip AY, Tse LA, Ong EY, Chow LW (2010) Survival benefits from lapatinib therapy in women with HER2-overexpressing breast cancer: a systematic review. Anticancer Drugs 21(5):487–493

    Article  PubMed  CAS  Google Scholar 

  20. Reid A, Vidal L, Shaw H, de Bono J (2007) Dual inhibition of ErbB1 (EGFR/HER1) and ErbB2 (HER2/neu). Eur J Cancer 43(3):481–489

    Article  PubMed  CAS  Google Scholar 

  21. Lurje G, Lenz HJ (2009) EGFR signaling and drug discovery. Oncology 77(6):400–410

    Article  PubMed  CAS  Google Scholar 

  22. Ma E, Wang X, Li Y, Sun X, Tai W, Li T, Guo T (2008) Induction of apoptosis by furanodiene in HL60 leukemia cells through activation of TNFR1 signaling pathway. Cancer Lett 271(1):158–166

    Article  PubMed  CAS  Google Scholar 

  23. Makabe H, Maru N, Kuwabara A, Kamo T, Hirota M (2006) Anti-inflammatory sesquiterpenes from Curcuma zedoaria. Nat Prod Res 20(7):680–685

    Article  PubMed  CAS  Google Scholar 

  24. Tanaka K, Kuba Y, Ina A, Watanabe H, Komatsu K (2008) Prediction of cyclooxygenase inhibitory activity of curcuma rhizome from chromatograms by multivariate analysis. Chem Pharm Bull (Tokyo) 56(7):936–940

    Article  CAS  Google Scholar 

  25. Wang W, Yang S, Su Y, Xiao Z, Wang C, Li X, Lin L, Fenton BM, Paoni SF, Ding I, Keng P, Okunieff P, Zhang L (2007) Enhanced antitumor effect of combined triptolide and ionizing radiation. Clin Cancer Res 13(16):4891–4899

    Article  PubMed  CAS  Google Scholar 

  26. Ricote M, Garcia-Tunon I, Fraile B, Fernandez C, Aller P, Paniagua R, Royuela M (2006) P38 MAPK protects against TNF-alpha-provoked apoptosis in LNCaP prostatic cancer cells. Apoptosis 11(11):1969–1975

    Article  PubMed  CAS  Google Scholar 

  27. Tse AK, Wan CK, Zhu GY, Shen XL, Cheung HY, Yang M, Fong WF (2007) Magnolol suppresses NF-kappaB activation and NF-kappaB regulated gene expression through inhibition of IkappaB kinase activation. Mol Immunol 44(10):2647–2658

    Article  PubMed  CAS  Google Scholar 

  28. Zhang D, Pal A, Bornmann WG, Yamasaki F, Esteva FJ, Hortobagyi GN, Bartholomeusz C, Ueno NT (2008) Activity of lapatinib is independent of EGFR expression level in HER2-overexpressing breast cancer cells. Mol Cancer Ther 7(7):1846–1850

    Article  PubMed  CAS  Google Scholar 

  29. Li YM, Pan Y, Wei Y, Cheng X, Zhou BP, Tan M, Zhou X, Xia W, Hortobagyi GN, Yu D, Hung MC (2004) Upregulation of CXCR4 is essential for HER2-mediated tumor metastasis. Cancer Cell 6(5):459–469

    Article  PubMed  CAS  Google Scholar 

  30. Patel D, Bassi R, Hooper A, Prewett M, Hicklin DJ, Kang X (2009) Anti-epidermal growth factor receptor monoclonal antibody cetuximab inhibits EGFR/HER-2 heterodimerization and activation. Int J Oncol 34(1):25–32

    PubMed  CAS  Google Scholar 

  31. Chiosis G, Keeton AB (2009) Assay for isolation of inhibitors of her2-kinase expression. Methods Mol Biol 486:139–149

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Richard K.W. Choy (Obstetrics and Gynaecology Department, The Chinese University of Hong Kong) for the generous gift of SKBR3 cell line. This work was supported by a Faculty Research Grant of Hong Kong Baptist University (FRG2/08-09/102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang-Fun Fong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 307 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, YW., Zhu, GY., Shen, XL. et al. Furanodienone induces cell cycle arrest and apoptosis by suppressing EGFR/HER2 signaling in HER2-overexpressing human breast cancer cells. Cancer Chemother Pharmacol 68, 1315–1323 (2011). https://doi.org/10.1007/s00280-011-1624-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-011-1624-x

Keywords

Navigation