Skip to main content
Log in

In reply

  • Reply
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Basso M, Modoni A, Spada D, Cassano A, Schinzari G, Lo Monaco M, Quaranta D, Tonali PA, Barone C (2010). Polymorphism of CAG motif of SK3 gene is associated with acute oxaliplatin neurotoxicity. Cancer Chemother Pharmacol. doi:1007/s00280-010-1466-y

  2. Frei E, Spindler I, Grissmer S, Jager H (2006) Interaction of N-terminal and C-terminal parts of small conductance Ca2+ activated k+ channels, hSK3. Cell Physiol Biochem 18:165–176

    Article  PubMed  CAS  Google Scholar 

  3. Adelsberger H, Quasthoff S, Grosskreutz J, Lepier A, Eckel F, Lersch C (2000) The chemotherapeutic oxaliplatin alters voltage-gated Na(+) channel kinetics on rat sensory neurons. Eur J Pharmacol 406:25–32

    Article  PubMed  CAS  Google Scholar 

  4. Grolleau F, Gamelin L, Boisdron-Celle M, Lapied B, Phelate M, Gamelin E (2001) A possible explanation for a neurotoxic effect of the anticancer agent oxaliplatin on neuronal voltage-gated sodium channels. J Neurophysiol 85:2293–2297

    PubMed  CAS  Google Scholar 

  5. Park SB, Lin CSY, Krishnan AV, Goldstein D, Friedlander ML, Kiernan MC (2009) Oxaliplatin-induced neurotoxicity: changes in axonal excitability precede development of neuropathy. Brain 132:2712–2723

    Article  PubMed  Google Scholar 

  6. Krishnan AV, Goldstein D, Friedlander M, Kiernan MC (2005) Oxaliplatin-induced neurotoxicity and development of neuropathy. Muscle Nerve 32:51–60

    Article  PubMed  CAS  Google Scholar 

  7. McIntyre CC, Richardson AG, Grill WM (2002) Modeling the excitability of mammalian nerve fibers: influence of afterpotentials on recovery cycle. J Neurophysiol 87:995–1006

    PubMed  Google Scholar 

  8. Obermair GJ, Kaufmann WA, Knaus HG, Flucher BE (2003) The small conductance Ca2+-activated K+ channel SK3 is localized in nerve terminals of excitatory synapses of cultured mouse hippocampal neurons. Eur J Neurosci 17:721–731

    Article  PubMed  Google Scholar 

  9. Hart IK, Waters C, Vincent A, Newland C, Beeson D, Pongs O, Morris C, Newsom-Davis J (1997) Autoantibodies detected to expressed K+ channels are implicated in neuromyotonia. Ann Neurol 41:238–246

    Article  PubMed  CAS  Google Scholar 

  10. Wilson RH, Lehky T, Rebecca RT, Quinn MG, Floeter MK, Grem JL (2002) Acute oxaliplatin-induced peripheral nerve hyperexcitability. J Clin Oncol 20:1767–1774

    Article  PubMed  CAS  Google Scholar 

  11. Lehky TJ, Leonard GD, Wilson RH, Grem JL, Floeter MK (2004) Oxaliplatin-induced neurotoxicity: acute hyperexcitability and chronic neuropathy. Muscle Nerve 29:387–392

    Article  PubMed  CAS  Google Scholar 

  12. Favero M, Jiang D-J, Chiamulera C, Cangiano A, Fumagalli GF (2008) Expression of small conductance calcium-activated potassium channels (SK3) in skeletal muscle: regulation by muscle activity. J Physiol 19:4763–4774

    Article  Google Scholar 

  13. Jacobson D, Herson PS, Neelands TR, Maylie J, Adelman JP (2002) SK channels are necessary but not sufficient for denervation-induced hyperexcitability. Muscle Nerve 26:817–822

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Barone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basso, M., Modoni, A., Lo Monaco, M. et al. In reply. Cancer Chemother Pharmacol 67, 1191–1192 (2011). https://doi.org/10.1007/s00280-011-1578-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-011-1578-z

Keywords

Navigation