Skip to main content

Advertisement

Log in

Hyaluronic acid–paclitaxel: effects of intraperitoneal administration against CD44(+) human ovarian cancer xenografts

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Hyaluronan (HA)-receptors (mainly CD44 and RHAMM) are overexpressed in a wide variety of cancers including ovarian tumors, and HA-bioconjugates have been developed to enhance selective entry of cytotoxic drugs into HA receptor-expressing cancerous cells. Here, we evaluated the potential application of a new HA-paclitaxel bioconjugate, ONCOFID-P, for intraperitoneal (IP) treatment of ovarian cancer.

Methods

In vitro cytotoxic effect of ONCOFID-P was first assessed on CD44(+) OVCAR-3 and SKOV-3 human ovarian cancer cell lines. Studies were performed in female Balb/c athymic mice IP implanted with OVCAR-3 or SKOV-3 and treated with IP ONCOFID-P, and IP and intravenous (IV) free paclitaxel, at their maximum tolerated dose (MTD 168, 80 and 80 mg/kg, total dose, respectively). The potential detrimental effect of the IP ONCOFID-P and IP free paclitaxel on hematopoiesis was also assessed on peripheral blood, bone marrow and spleen.

Results

Results show that ONCOFID-P cytotoxicity against both OVCAR-3 and SKOV-3 cell lines was somewhat less effective than free paclitaxel. Conversely, in in vivo experiments, IP treatment with ONCOFID-P was overall more effective than IV and IP free paclitaxel in inhibiting intra-abdominal tumor dissemination, abrogating ascites, prolonging survival and curing mice. ONCOFID-P and IP free paclitaxel were equivalent in terms of myelotoxicity, although the former was administered at a two-fold higher dose.

Conclusions

Present data strongly support the development of ONCOFID-P for locoregional treatment of ovarian cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ (2009) Cancer statistics. CA Cancer J Clin 59:225–249

    Article  PubMed  Google Scholar 

  2. Ferlay J, Autier P, Boniol M, Heanue M, Colombet M, Boyle P (2007) Estimates of the cancer incidence and mortality in Europe in 2006. Ann Oncol 18:581–592

    Article  PubMed  CAS  Google Scholar 

  3. Markman M (2008) The promise and perils of ‘targeted therapy’ of advanced ovarian cancer. Oncology 74:1–6

    Article  PubMed  Google Scholar 

  4. Landrum LM, Gold MA, Moore KN, Myers TK, McMeekin DS, Walker JL (2008) Intraperitoneal chemotherapy for patients with advanced epithelial ovarian cancer: a review of complications and completion rates. Gynecol Oncol 108:342–347

    Article  PubMed  CAS  Google Scholar 

  5. Petignat P, du Bois A, Bruchim I, Fink D, Provencher DM (2007) Should intraperitoneal chemotherapy be considered as standard first-line treatment in advanced stage ovarian cancer? (Review). Crit Rev Oncol Hematol 62:137–147

    Article  PubMed  Google Scholar 

  6. de Bree E, Theodoropoulos PA, Rosing H, Michalakis J, Romanos J, Beijnen JH, Tsiftsis DD (2006) Treatment of ovarian cancer using intraperitoneal chemotherapy with taxanes: from laboratory bench to bedside. Cancer Treat Rev 32:471–482

    Article  PubMed  Google Scholar 

  7. Markman M (2008) Antineoplastic agents in the management of ovarian cancer: current status and emerging therapeutic strategies (Review). Trends Pharmacol Sci 29:515–519

    Article  PubMed  CAS  Google Scholar 

  8. de Bree E, Rosing H, Michalakis J, Romanos J, Relakis K, Theodoropoulos PA, Beijnen JH, Georgoulias V, Tsiftsis DD (2006) Intraperitoneal chemotherapy with taxanes for ovarian cancer with peritoneal dissemination. Eur J Surg Oncol 32:666–670

    Article  PubMed  Google Scholar 

  9. Mamot C, Drummond DC, Hong K, Kirpotin DB, Park JW (2003) Liposome-based approaches to overcome anticancer drug resistance (Review). Drug Resist Updat 6:271–279

    Article  PubMed  CAS  Google Scholar 

  10. Lesley J, Hascall VC, Tammi M, Hyman R (2000) Hyaluronan binding by cell surface CD44. J Biol Chem 275:26967–26975

    PubMed  CAS  Google Scholar 

  11. Entwistle J, Hall CL, Turley EA (1996) HA receptors: regulators of signalling to the cytoskeleton. J Cell Biochem 61:569–577

    Article  PubMed  CAS  Google Scholar 

  12. Kayastha S, Freedman AN, Piver MS, Mukkamalla J, Romero-Guittierez M, Werness BA (1999) Expression of the hyaluronan receptor, CD44S, in epithelial ovarian cancer is an independent predictor of survival. Clin Cancer Res 5:1073–1076

    PubMed  CAS  Google Scholar 

  13. Maxwell CA, McCarthy J, Turley E (2008) Cell-surface and mitotic-spindle RHAMM: moonlighting or dual oncogenic functions? J Cell Sci 121:925–932

    Article  PubMed  CAS  Google Scholar 

  14. Chen H, Hao J, Wang L, Li Y (2009) Coexpression of invasive markers (uPA, CD44) and multiple drug-resistance proteins (MDR1, MRP2) is correlated with epithelial ovarian cancer progression. Br J Cancer 101:432–440

    Article  PubMed  CAS  Google Scholar 

  15. Leonelli F, La Bella A, Migneco LM, Bettolo RM (2008) Design, synthesis and applications of hyaluronic acid-paclitaxel bioconjugates. Molecules 13:360–378

    Article  PubMed  CAS  Google Scholar 

  16. Wilson JG (1997) Adhesive interactions in hemopoiesis (Review). Acta Haematol 97:6–12

    Article  PubMed  CAS  Google Scholar 

  17. Ghaffari S, Smadja-Joffe F, Oostendorp R, Lévesque JP, Dougherty G, Eaves A, Eaves C (1999) CD44 isoforms in normal and leukemic hematopoiesis. Exp Hematol 27:978–993

    Article  PubMed  CAS  Google Scholar 

  18. Chan JY, Watt SM (2001) Adhesion receptors on haematopoietic progenitor cells. Br J Haematol 112:541–557

    Article  PubMed  CAS  Google Scholar 

  19. Banzato A, Bobisse S, Rondina M, Renier D, Bettella F, Esposito G, Quintieri L, Meléndez-Alafort L, Mazzi U, Zanovello P, Rosato A (2008) A paclitaxel-hyaluronan bioconjugate targeting ovarian cancer affords a potent invivo therapeutic activity. Clin Cancer Res 14:3598–3606

    Article  PubMed  CAS  Google Scholar 

  20. Gelderblom H, Verweij J, Nooter K, Sparreboom A (2001) Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. Eur J Cancer 37:1590–1598

    Article  PubMed  CAS  Google Scholar 

  21. Rosato A, Banzato A, De Luca G, Renier D, Bettella F, Pagano C, Esposito G, Zanovello P, Bassi P (2006) HYTAD1–p20: a new paclitaxel-hyaluronic acid hydrosoluble bioconjugate for treatment of superficial bladder cancer. Urol Oncol 24:207–215

    Article  PubMed  CAS  Google Scholar 

  22. Motulsky HJ, Ransnas LA (1987) Fitting curves to data using nonlinear regression: a practical and nonmathematical review. FASEB J 1:365–374

    PubMed  CAS  Google Scholar 

  23. United Kingdom Co-ordinating Committee on Cancer Research (UKCCCR) (1998) Guidelines for the welfare of animals in experimental neoplasia (second edition). Br J Cancer 77:1–10

    Google Scholar 

  24. Ferlini C, Cicchillitti L, Raspaglio G, Bartollino S, Cimitan S, Bertucci C, Mozzetti S, Gallo D, Persico M, Fattorusso C, Campiani G, Scambia G (2009) Paclitaxel directly binds to Bcl-2 and functionally mimics activity of Nur77. Cancer Res 69:6906–6914

    Article  PubMed  CAS  Google Scholar 

  25. Gandon G, Quillien V, Godey F (2004) Evaluation of the new access OV monitor assay for the quantitative determination of CA 125 antigen levels. Immuno-analyse and Biologie specialisée 19:228–234

    Article  Google Scholar 

  26. Holdenrieder S, Molina R, Gion M, Gressner A, Troalen F, Auge JM, Zancan M, Wycislo M, Stieber P (2008) Alternative antibody for the detection of CA 125 antigen: a European multicenter study for the evaluation of the analytical and clinical performance of the access OV monitor assay on the UniCel D×I 800 immunoassay system. Clin Chem Lab Med 46:588–599

    Article  PubMed  CAS  Google Scholar 

  27. Fleuren GJ, Nap M, Aalders JG, Trimbos JB, de Bruijn HW (1987) Explanation of the limited correlation between tumor CA 125 content and serum CA 125 antigen levels in patients with ovarian tumors. Cancer 60:2437–2442

    Article  PubMed  CAS  Google Scholar 

  28. Duffy MJ, Bonfrer JM, Kulpa J, Rustin GJ, Soletormos G, Torre GC, Tuxen MK, Zwirner M (2005) CA125 in ovarian cancer: European group on tumor markers guidelines for clinical use. Int J Gynecol Cancer 15:679–691

    Article  PubMed  CAS  Google Scholar 

  29. Cesta MF (2006) Normal structure, function, and histology of mucosa-associated lymphoid tissue (Review). Toxicol Pathol 34:599–608

    Article  PubMed  Google Scholar 

  30. Garson K, ShawTJ Clark KV, Yao DS, Vanderhyden BC (2005) Models of ovarian cancer—are we there yet? Mol Cell Endocrinol 239:5–26

    Article  Google Scholar 

  31. Makrydimas G, Zagorianakou N, Zagorianakou P, Agnantis NJ (2003) CD44 family and gynaecological cancer. In Vivo 17:633–640

    PubMed  CAS  Google Scholar 

  32. Yamada J, Kitayama J, Tsuno NH, Yamashita H, Miyato H, Soma D, Otani K, Kamei T, Ishigami H, Hidemura A, Kaisaki S, Takahashi K, Nagawa H (2008) Intra-peritoneal administration of paclitaxel with non-animal stabilized hyaluronic acid as a vehicle—a new strategy against peritoneal dissemination of gastric cancer. Cancer Lett 272:307–315

    Article  PubMed  CAS  Google Scholar 

  33. Juaristi JA, Aguirre MV, Carmuega RJ, Romero-Benítez M, Alvarez MA, Brandan NC (2001) Hematotoxicity induced by paclitaxel: invitro and invivo assays during normal murine hematopoietic recovery. Method Find Exp Clin Pharmacol 23:161–167

    Article  CAS  Google Scholar 

  34. Aguirre MV, Todaro JS, Juaristi JA, Brandan NC (2010) Murine erythropoietic impairment induced by paclitaxel: interactions of GATA-1 and erythroid Krüppel-like transcription factors, apoptotic related proteins and erythropoietin receptor. Eur J Pharmacol 636:42–51

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

This work has been supported by a grant from Fidia Farmaceutici, Abano Terme, Italy. The funding sources had no role in the study design, data collection, data analysis, data interpretation, and writing of this report or in the decision to submit the paper for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Gallo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Stefano, I., Battaglia, A., Zannoni, G.F. et al. Hyaluronic acid–paclitaxel: effects of intraperitoneal administration against CD44(+) human ovarian cancer xenografts. Cancer Chemother Pharmacol 68, 107–116 (2011). https://doi.org/10.1007/s00280-010-1462-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-010-1462-2

Keywords

Navigation