Cancer Chemotherapy and Pharmacology

, Volume 68, Issue 1, pp 45–52 | Cite as

In vitro and in vivo antitumor effects of (4-methoxyphenyl)(3,4,5-trimethoxyphenyl)methanone

  • Hemerson Iury F. Magalhães
  • Daniel P. Bezerra
  • Bruno C. Cavalcanti
  • Diego V. Wilke
  • Rodrigo Rotta
  • Dênis P. de Lima
  • Adilson Beatriz
  • Ana Paula N. N. Alves
  • Flávio da S. Bitencourt
  • Ingrid S. T. de Figueiredo
  • Nylane M. N. Alencar
  • Letícia V. Costa-Lotufo
  • Manoel Odorico Moraes
  • Claudia Pessoa
Original Article



(4-Methoxyphenyl)(3,4,5-trimethoxyphenyl)methanone (PHT) is a phenstatin analog compound. PHT is a known tubulin inhibitor that has potent cytotoxic activity. In the present study, PHT was synthesized and its antitumor activity was determined using in vitro and in vivo experimental models.


The in vitro cytotoxic activity of the PHT was determined by the MTT assay. The antimitotic and hemolytic effects were determined based on the inhibition of sea urchin embryo development and lysis of mouse erythrocytes, respectively. In vivo antitumor activity was assessed in mice inoculated with sarcoma 180 cells.


In vitro, PHT displayed cytotoxicity in tumor cell lines, showing IC50 values in the nanomolar range. In addition, it inhibited sea urchin embryo development during all phases examined, first and third cleavage and blastula stage. However, PHT did not induce hemolysis using mouse erythrocytes, suggesting that the cytotoxicity of PHT does not involve membrane damage. The in vivo study demonstrated tumor inhibition rates of 30.9 and 48.2% for PHT at doses of 20 and 40 mg/kg, respectively. In addition, PHT was also able to increase the response elicited by 5-fluorouracil (5-FU) from 33.3 to 55.7%. The histopathological analysis of liver, kidney, and spleen showed that they were just moderately affected by PHT treatment. Neither enzymatic activity of transaminases nor urea levels were significantly affected. Hematological analysis showed leukopenia after 5-FU treatment, but this effect was prevented when 5-FU was combined with PHT.


In conclusion, PHT exhibited in vitro and in vivo antitumor effects without substantial toxicity.


Phenstatins Tubulin inhibitor Antitumor activity Sarcoma 180 Toxicity 



We wish to thank CNPq, CAPES, Instituto Claude Bernard, FUNCAP and FINEP for their financial support in the form of grants and fellowship awards. The authors also thank the National Cancer Institute (Bethesda, MD, USA) for the donation of the tumor cell lines used in this study. The authors thank Silvana França dos Santos, Luciana França and Maria de Fátima Teixeira for technical assistance. Dr. A. Leyva helped with English editing of the manuscript.


  1. 1.
    Vernon B, Powell S (2004) Localized delivery system for phenstatin using N-isopropylacrylamide, WO 2004009127Google Scholar
  2. 2.
    Pettit GR, Grealish MP (2001) Synthesis of hydroxyphenstatin and the prodrugs thereof as anticancer and antimicrobial agents, WO 2001081288Google Scholar
  3. 3.
    Alvarez C, Alvarez R, Corchete P, Pérez-Melero C, Peláez R, Medarde M (2008) Naphthylphenstatins as tubulin ligands: synthesis and biological evaluation. Bioorg Med Chem 16:8999–9008PubMedCrossRefGoogle Scholar
  4. 4.
    Alvarez R, Alvarez C, Mollinedo F, Sierra BG, Medarde M, Peláez R (2009) Isocombretastatins A: 1,1-diarylethenes as potent inhibitors of tubulin polymerization and cytotoxic compounds. Bioorg Med Chem 17:6422–6431PubMedCrossRefGoogle Scholar
  5. 5.
    Alvarez C, Alvarez R, Corchete P, Pérez-Melero C, Peláez R, Medarde M (2010) Exploring the effect of 2,3,4-trimethoxy-phenyl moiety as a component of indolephenstatins. Eur J Med Chem 45:588–597PubMedCrossRefGoogle Scholar
  6. 6.
    Pettit GR, Toki B, Herald DL, Verdier-Pinard P, Boyd MR, Hamel E, Pettit RK (1998) Antineoplastic agents. 379. Synthesis of phenstatin phosphate. J Med Chem 41:1688–1695PubMedCrossRefGoogle Scholar
  7. 7.
    Cushman M, Nagarathnam D, Gopal D, He HM, Lin CM, Hamel E (1992) Synthesis and evaluation of analogs of (Z)-1-(4-methoxyphenyl)-2-(3,4,5-trimethoxyphenyl)ethene as potential cytotoxic and antimitotic agents. J Med Chem 35:2293–2306PubMedCrossRefGoogle Scholar
  8. 8.
    Liou JP, Chang CW, Song JS, Yang YN, Yeh CF, Tseng HY, Lo YK, Chang YL, Chang CM, Hsieh HP (2002) Synthesis and structure-activity relationship of 2-aminobenzophenone derivatives as antimitotic agents. J Med Chem 45:2556–2562PubMedCrossRefGoogle Scholar
  9. 9.
    Liou JP, Chang JY, Chang CW, Chang CY, Mahindroo N, Kuo FM, Hsieh HP (2004) Synthesis and structure-activity relationships of 3-aminobenzophenones as antimitotic agents. J Med Chem 47:2897–2905PubMedCrossRefGoogle Scholar
  10. 10.
    Frank HR, Tarbell DS (1948) Friedel-Crafts reaction on highly methoxylated compounds. J Am Chem Soc 70:1276–1278CrossRefGoogle Scholar
  11. 11.
    Barbosa EG, Bega LAS, Beatriz A, Sarkar T, Hamel E, Amaral MS, Lima DP (2009) A diaryl sulfide, sulfoxide, and sulfone bearing structural similarities to combretastatin A-4. Eur J Med Chem 44:2685–2688PubMedCrossRefGoogle Scholar
  12. 12.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 16:55–63CrossRefGoogle Scholar
  13. 13.
    Jimenez PC, Fortier SC, Lotufo TMC, Pessoa C, Moraes MEA, Moraes MO, Costa-Lotufo LV (2003) Biological activity in extracts of ascidians (Tunicata, Ascidiacea) from the northeastern Brazilian coast. J Exp Mar Biol Ecol 287:93–101CrossRefGoogle Scholar
  14. 14.
    Bezerra DP, Castro FO, Alves APNN, Pessoa C, Moraes MO, Silveira ER, Lima MAS, Elmiro FJM, Costa-Lotufo LV (2006) In vivo growth-inhibition of sarcoma 180 by piplartine and piperine, two alkaloid amides from Piper. Braz J Med Biol Res 39:801–807PubMedCrossRefGoogle Scholar
  15. 15.
    Wu M, Sun Q, Yang C, Chen D, Ding J, Chen Y, Lin L, Xie Y (2007) Synthesis and activity of Combretastatin A-4 analogues: 1, 2, 3-thiadiazoles as potent antitumor agents. Bioorg Med Chem Lett 17:869–873PubMedCrossRefGoogle Scholar
  16. 16.
    Bezerra DP, Pessoa C, Moraes MO, Alencar NM, Mesquita RO, Lima MW, Alves AP, Pessoa OD, Chaves JH, Silveira ER, Costa-Lotufo LV (2008) In vivo growth inhibition of sarcoma 180 by piperlonguminine, an alkaloid amide from the Piper species. J Appl Toxicol 28:599–607PubMedCrossRefGoogle Scholar
  17. 17.
    Pessoa C, Silveira ER, Lemos TL, Wetmore LA, Moraes MO, Leyva A (2000) Antiproliferative effects of compounds derived from plants of Northeast Brazil. Phytother Res 14:187–191PubMedCrossRefGoogle Scholar
  18. 18.
    Costa-Lotufo LV, Silveira ER, Barros MC, Lima MA, De Moraes ME, De Moraes MO, Pessoa C (2004) Antiproliferative effects of abietane diterpenes from Aegiphila lhotzkyana. Planta Med 70:180–182PubMedCrossRefGoogle Scholar
  19. 19.
    Jacobs RS, White S, Wilson L (1981) Selective compounds derived from marine organisms: effects on cell division in fertilized sea urchin eggs. Fed Proc 40:26–29PubMedGoogle Scholar
  20. 20.
    Alvarez C, Alvarez R, Corchete P, Pérez-Melero C, Peláez R, Medarde M (2007) Synthesis and biological activity of naphthalene analogues of phenstatins: naphthylphenstatins. Bioorg Med Chem Lett 17:3417–3420PubMedCrossRefGoogle Scholar
  21. 21.
    Fusetani N (1987) Marine metabolites which inhibit development of echinoderm embryos. In: Scheur PJ (ed) Biorganic marine chemistry. Springer, Berlin, pp 61–92Google Scholar
  22. 22.
    Costa-Lotufo LV, Khan MT, Ather A, Wilke DV, Jimenez PC, Pessoa C, de Moraes ME, de Moraes MO (2005) Studies of the anticancer potential of plants used in Bangladeshi folk medicine. J Ethnopharmacol 99:21–30PubMedCrossRefGoogle Scholar
  23. 23.
    Bezerra DP, Pessoa C, de Moraes MO, Silveira ER, Lima MA, Elmiro FJ, Costa-Lotufo LV (2005) Antiproliferative effects of two amides, piperine and piplartine, from Piper species. Z Naturforsch C 60:539–543PubMedGoogle Scholar
  24. 24.
    Kaufman DC, Chabner BA (2001) Clinical strategies for cancer treatment: the role of drugs. In: Chabner BA, Longo DL (eds) Cancer chemotherapy & biotherapy. Lippincott Williams & Wilkins, Philadelphia, pp 1–16Google Scholar
  25. 25.
    Zamagni C, Martoni A, Cacciari N, Gentile A, Pannuti F (1998) The combination of paclitaxel and carboplatin as first-line chemotherapy in patients with stage III and stage IV ovarian cancer: a phase I-II study. Am J Clin Oncol 21:491–497PubMedCrossRefGoogle Scholar
  26. 26.
    Cao X, Cai R, Ju DW, Tao Q, Yu Y, Wang J (1998) Augmentation of hematopoiesis by fibroblast-mediated interleukin-6 gene therapy in mice with chemotherapy. J Interferon Cytokine Res 18:227–233PubMedCrossRefGoogle Scholar
  27. 27.
    Saif MW (2009) Secondary hepatic resection as a therapeutic goal in advanced colorectal cancer. World J Gastroenterol 15:3855–3864PubMedCrossRefGoogle Scholar
  28. 28.
    McGee JOD, Isaacson PA, Wright NA (1992) Oxford textbook of pathology: pathology of systems. Oxford University Press, New YorkGoogle Scholar
  29. 29.
    Scheuer PJ, Lefkowitch JH (2000) Drugs and toxins. In: Scheuer PJ, Lefkowitch JH (eds) Liver biopsy interpretation, 6th edn. W. B. Saunders, London, pp 134–150Google Scholar
  30. 30.
    Kummar V, Abbas A, Fausto N (2004) Robbins and cotran pathologic basis of disease, 7th edn. W.B., SaundersGoogle Scholar
  31. 31.
    Curran RC (1990) Color atlas of histopathology. Oxford University Press, New YorkGoogle Scholar
  32. 32.
    Olsen S, Solez K (1994) Acute tubular necrosis and toxic renal injury. In: Tisher CC, Brenner BM (eds) Renal pathology: with clinical and functional correlations. JB Lippincott, Philadelphia, pp 769–809Google Scholar
  33. 33.
    Mitchell JA, Gillam EM, Stanley LA, Sim E (1990) Immunotoxic side-effects of drug therapy. Drug Saf 5:168–178PubMedCrossRefGoogle Scholar
  34. 34.
    Takiguchi N, Saito N, Nunomura M, Kouda K, Oda K, Furuyama N, Nakajima N (2001) Use of 5-FU plus hyperbaric oxygen for treating malignant tumors: evaluation of antitumor effect and measurement of 5-FU in individual organs. Cancer Chemother Pharmacol 47:11–14PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Hemerson Iury F. Magalhães
    • 1
  • Daniel P. Bezerra
    • 2
  • Bruno C. Cavalcanti
    • 1
  • Diego V. Wilke
    • 1
  • Rodrigo Rotta
    • 3
  • Dênis P. de Lima
    • 3
  • Adilson Beatriz
    • 3
  • Ana Paula N. N. Alves
    • 4
  • Flávio da S. Bitencourt
    • 1
  • Ingrid S. T. de Figueiredo
    • 1
  • Nylane M. N. Alencar
    • 1
  • Letícia V. Costa-Lotufo
    • 1
  • Manoel Odorico Moraes
    • 1
  • Claudia Pessoa
    • 1
  1. 1.Departamento de Fisiologia e Farmacologia, Faculdade de MedicinaUniversidade Federal do CearáFortalezaBrazil
  2. 2.Departamento de FisiologiaUniversidade Federal de SergipeSão CristóvãoBrazil
  3. 3.Departamento de Química (Laboratório LP4)Universidade Federal do Mato Grosso do SulCampo GrandeBrazil
  4. 4.Departamento de Clínica OdontológicaUniversidade Federal do CearáFortalezaBrazil

Personalised recommendations