Skip to main content
Log in

Dichloroacetate metabolically targeted therapy defeats cytotoxicity of standard anticancer drugs

Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Cite this article



The observation that the orphan drug dichloroacetate (DCA) selectively promotes mitochondria-regulated apoptosis and inhibits tumour growth in preclinical models by shifting the glucose metabolism in cancer cells from anaerobic to aerobic glycolysis attracted not only scientists’, clinicians’ but also patients’ interests and prompted us to further evaluate DCA effects against paediatric malignancies.


The effects of DCA on mitochondrial membrane potential (ΔΨm), cell viability and induction of apoptosis were evaluated in paediatric tumour cell lines and the non-malignant cell line HEK293. In addition, combinations of DCA with the standard anticancer drugs cisplatin, doxorubicin, and temozolomide were tested and intra- and extra-cellular platinum species analysed.


DCA selectively induced phosphatidylserine externalisation and reduced ΔΨm in paediatric tumour cells compared to HEK293 cells, but DCA concentrations ≤10 mmol/L only moderately inhibited the growth of 18 paediatric tumour cell lines. DCA neither influenced the in vitro stability of cisplatin nor the cellular cisplatin uptake, but it abrogated the cytotoxicity of cisplatin in 7 out of 10 cell lines. DCA also affected the cytotoxicity of doxorubicin but did not influence the cytotoxicity of temozolomide. Despite phosphatidylserine externalisation, DCA failed to activate caspase 3/7 and, moreover, suppressed caspase 3/7 activation by cisplatin and doxorubicin.


Our results indicate that apart from the intriguing effects of DCA on the glucose metabolism of cancer cells, the use of DCA for cancer treatment has to be evaluated carefully. Moreover, compassionate use of the orally available drug by patients with cancer themselves without medical supervision is strongly discouraged at present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. Warburg O (1956) On respiratory impairment in cancer cells. Science 124:269–270

    CAS  PubMed  Google Scholar 

  2. Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4:891–899

    Article  CAS  PubMed  Google Scholar 

  3. Samudio I, Fiegl M, Andreeff M (2009) Mitochondrial uncoupling and the Warburg effect: molecular basis for the reprogramming of cancer cell metabolism. Cancer Res 69:2163–2166

    Article  CAS  PubMed  Google Scholar 

  4. Stacpoole PW (1989) The pharmacology of dichloroacetate. Metabolism 38:1124–1144

    Article  CAS  PubMed  Google Scholar 

  5. Bowker-Kinley MM, Davis WI, Wu P, Harris RA, Popov KM (1998) Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochem J 329:191–196

    CAS  PubMed  Google Scholar 

  6. Bonnet S, Archer SL, Allalunis-Turner J et al (2007) A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11:37–51

    Article  CAS  PubMed  Google Scholar 

  7. Wong JY, Huggins GS, Debidda M, Munshi NC, De Vivo I (2008) Dichloroacetate induces apoptosis in endometrial cancer cells. Gynecol Oncol 109:394–402

    Article  CAS  PubMed  Google Scholar 

  8. Cao W, Yacoub S, Shiverick KT, Namiki K, Sakai Y, Porvasnik S, Urbanek C, Rosser CJ (2008) Dichloroacetate (DCA) sensitizes both wild-type and over expressing Bcl-2 prostate cancer cells in vitro to radiation. Prostate 68:1223–1231

    Article  CAS  PubMed  Google Scholar 

  9. Sun RC, Fadia M, Dahlstrom JE, Parish CR, Board PG, Blackburn AC (2009) Reversal of the glycolytic phenotype by dichloroacetate inhibits metastatic breast cancer cell growth in vitro and in vivo. Breast Cancer Res Treat 120:253–260

    Article  PubMed  Google Scholar 

  10. Chen Y, Cairns R, Papandreou I, Koong A, Denko NC (2009) Oxygen consumption can regulate the growth of tumors, a new perspective on the Warburg effect. PLoS One 4:e7033

    Article  PubMed  Google Scholar 

  11. Xu RH, Pelicano H, Zhou Y, Carew JS, Feng L, Bhalla KN, Keating MJ, Haung P (2005) Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res 65:613–621

    Article  CAS  PubMed  Google Scholar 

  12. Michelakis ED, Webster L, Mackey JR (2008) Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. Br J Cancer 99:989–994

    Article  CAS  PubMed  Google Scholar 

  13. Stacpoole PW, Nagaraja NV, Hutson AD (2003) Efficacy of dichloroacetate as a lactate-lowering drug. J Clin Pharmacol 43:683–691

    CAS  PubMed  Google Scholar 

  14. Stacpoole PW, Gilbert LR, Neiberger RE, Carney PR, Valenstein E, Theriaque DW, Shuster JJ (2008) Evaluation of long-term treatment of children with congenital lactic acidosis with dichloroacetate. Pediatrics 121:1223–1228

    Article  Google Scholar 

  15. Mori M, Yamagata T, Goto T, Saito S, Momoi MY (2004) Dichloroacetate treatment for mitochondrial cytopathy: long-term effects in MELAS. Brain Dev 26:453–458

    Article  PubMed  Google Scholar 

  16. Pearson H (2007) Cancer patients opt for unapproved drug. Nature 446:474–475

    Article  CAS  PubMed  Google Scholar 

  17. Chen LB (1988) Mitochondrial membrane potential in living cells. Annu Rev Cell Biol 4:155–181

    Article  CAS  PubMed  Google Scholar 

  18. Völker T, Denecke T, Steffen I, Misch D, Schönberger S, Plotkin M, Ruf J, Furth C, Stöver B, Hautzel H, Henze G, Amthauer H (2007) Positron emission tomography for staging of pediatric sarcoma patients: results of a prospective multicenter trial. J Clin Oncol 25:5435–5441

    Article  PubMed  Google Scholar 

  19. Chen QR, Song YK, Yu LR, Wei JS, Chung JY, Hewitt SM, Veenstra TD, Khan J (2010) Global genomic and proteomic analysis identifies biological pathways related to high-risk neuroblastoma. J Proteome Res 9:373–382

    Article  CAS  PubMed  Google Scholar 

  20. Wellmann S, Guschmann M, Griethe W, Eckert C, von Stackelberg A, Lottaz C, Moderegger E, Einsiedel HG, Eckardt KU, Henze G, Seeger K (2004) Activation of the HIF pathway in childhood ALL, prognostic implications of VEGF. Leukemia 18:926–933

    Article  CAS  PubMed  Google Scholar 

  21. Hulleman E, Kazemier KM, Holleman A, VanderWeele DJ, Rudin CM, Broekhuis MJ, Evans WE, Pieters R, Den Boer ML (2009) Inhibition of glycolysis modulates prednisolone resistance in acute lymphoblastic leukemia cells. Blood 113:2014–2021

    Article  CAS  PubMed  Google Scholar 

  22. Lu CW, Lin SC, Chen KF, Lai YY, Tsai SJ (2008) Induction of pyruvate dehydrogenase kinase-3 by hypoxia-inducible factor-1 promotes metabolic switch and drug resistance. J Biol Chem 283:28106–28114

    Article  CAS  PubMed  Google Scholar 

  23. Stacpoole PW, Kurtz TL, Han Z, Langaee T (2008) Role of dichloroacetate in the treatment of genetic mitochondrial diseases. Adv Drug Deliv Rev 60:1478–1487

    Article  CAS  PubMed  Google Scholar 

  24. Barshop BA, Naviaux RK, McGowan KA, Levine F, Nyhan WL, Loupis-Geller A, Haas RH (2004) Chronic treatment of mitochondrial disease patients with dichloroacetate. Mol Genet Metab 83:138–149

    Article  CAS  PubMed  Google Scholar 

  25. Dhar S, Lippard SJ (2009) Mitaplatin, a potent fusion of cisplatin and the orphan drug dichloroacetate. Proc Natl Acad Sci USA 106:22199–22204

    Article  CAS  PubMed  Google Scholar 

  26. Vyssokikh MY, Brdiczka D (2003) The function of complexes between the outer mitochondrial membrane pore (VDAC) and the adenine nucleotide translocase in regulation of energy metabolism and apoptosis. Acta Biochim Pol 50:389–404

    CAS  PubMed  Google Scholar 

  27. Yang Z, Schumaker LM, Egorin MJ, Zuhowski EG, Guo Z, Cullen KJ (2006) Cisplatin preferentially binds mitochondrial DNA and voltage-dependent anion channel protein in the mitochondrial membrane of head and neck squamous cell carcinoma: possible role in apoptosis. Clin Cancer Res 12:5817–5825

    Article  CAS  PubMed  Google Scholar 

  28. Tokarska-Schlattner M, Wallimann T, Schlattner U (2006) Alterations in myocardial energy metabolism induced by the anti-cancer drug doxorubicin. C R Biol 329:657–668

    Article  CAS  PubMed  Google Scholar 

Download references


This work was supported by the Karl Bröcker Stiftung Weseke.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Claudia Lanvers-Kaminsky.

Additional information

This work fulfils the requirements for the medical doctoral thesis of Dirk Heshe.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Heshe, D., Hoogestraat, S., Brauckmann, C. et al. Dichloroacetate metabolically targeted therapy defeats cytotoxicity of standard anticancer drugs. Cancer Chemother Pharmacol 67, 647–655 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: