Skip to main content

Advertisement

Log in

The potential of vitamin K3 as an anticancer agent against breast cancer that acts via the mitochondria-related apoptotic pathway

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

We tried to clarify the cytotoxic mechanism of VK3 using the breast cancer cell line MCF-7.

Methods

Cytotoxicity was measured via intracellular esterase activity. DNA fragmentation was assessed by agarose gel electrophoresis. JC-1 staining was applied to measure mitochondrial dysfunction. Caspase activation and reactive oxidative species (ROS) generation were also measured.

Results

VK3 exhibited cytotoxicity that caused DNA fragmentation in MCF-7 cells with an IC50 of 14.2 μM. JC-1 staining revealed that VK3 caused mitochondrial dysfunction including a disappearance of mitochondrial membrane potential. Additional investigation showed that the mitochondrial damage was induced by the generation of ROS and the subsequent activation of caspase-7 and -9.

Conclusions

Our findings demonstrate that VK3-induced apoptosis is selectively initiated by the mitochondria-related pathway and might be useful in breast cancer chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

VK3 :

Vitamin K3

ROS:

Reactive oxidative species

ER:

Endoplasmic reticulum

HMEpC:

Human mammary epithelial cells

DCFH-DA:

2′:7′-Dichlorofluorescein diacetate

FMK:

Fluoromethylketone

AMC:

7-Amino-4-methylcoumarin

DMSO:

Dimethyl sulfoxide

References

  1. Cranenburg EC, Schurgers LJ, Vermeer C (2007) Vitamin K: the coagulation vitamin that became omnipotent. Thromb Haemost 98:120–125

    PubMed  CAS  Google Scholar 

  2. Falanga A (2003) Biological and clinical aspects of anticancer effects of antithrombotics. Pathophysiol Haemost Thromb 33:389–392

    Article  PubMed  Google Scholar 

  3. Lamson DW, Plaza SM (2003) The anticancer effects of vitamin K. Altern Med Rev 8:303–318

    PubMed  Google Scholar 

  4. Falanga A, Marchetti M, Vignoli A et al (2003) Clotting mechanisms and cancer: implications in thrombus formation and tumor progression. Clin Adv Hematol Oncol 1:673–678

    PubMed  Google Scholar 

  5. Piccioli A, Falanga A, Prandoni P (2006) Anticoagulants and cancer survival. Semin Thromb Hemost 32:810–813

    Article  PubMed  CAS  Google Scholar 

  6. Tzeng WF, Chiou TJ, Huang JY et al (1992) Menadione-induced cardiotoxicity is associated with alteration in intracellular Ca2+ homeostasis. Proc Natl Sci Counc Repub China B 16:84–90

    PubMed  CAS  Google Scholar 

  7. Tzeng WF, Chiou TJ, Wang CP et al (1994) Cellular thiols as a determinant of responsiveness to menadione in cardiomyocytes. J Mol Cell Cardiol 26:889–897

    Article  PubMed  CAS  Google Scholar 

  8. Tzeng WF, Lee JL, Chiou TJ (1995) The role of lipid peroxidation in menadione-mediated toxicity in cardiomyocytes. J Mol Cell Cardiol 27:1999–2008

    Article  PubMed  CAS  Google Scholar 

  9. Chiou TJ, Tzeng WF (2000) The roles of glutathione and antioxidant enzymes in menadione-induced oxidative stress. Toxicology 154:75–84

    Article  PubMed  CAS  Google Scholar 

  10. D’Odorico A, Sturniolo GC, Bilton RF et al (1997) Quinone-induced DNA single strand breaks in a human colon carcinoma cell line. Carcinogenesis 18:43–46

    Article  PubMed  Google Scholar 

  11. Dussmann H, Kogel D, Rehm M et al (2003) Mitochondrial membrane permeabilization and superoxide production during apoptosis: a single-cell analysis. J Biol Chem 278:12645–12649

    Article  PubMed  CAS  Google Scholar 

  12. Gerasimenko JV, Gerasimenko OV, Palejwala A et al (2002) Menadione-induced apoptosis: roles of cytosolic Ca2+ elevations and the mitochondrial permeability transition pore. J Cell Sci 115:485–497

    PubMed  CAS  Google Scholar 

  13. Sakamoto S, Yokoyama M, Zhang X et al (2004) Increased expression of CYR61, an extracellular matrix signaling protein, in human benign prostatic hyperplasia and its regulation by lysophosphatidic acid. Endocrinology 145:2929–2940

    Article  PubMed  CAS  Google Scholar 

  14. Matzno S, Yasuda S, Kitada Y et al (2006) Clofibrate-induced apoptosis is mediated by Ca2+-dependent caspase-12 activation. Life Sci 78:1892–1899

    Article  PubMed  CAS  Google Scholar 

  15. Robinson JP, Bruner LH, Bassoe CF et al (1988) Measurement of intracellular fluorescence of human monocytes relative to oxidative metabolism. J Leukoc Biol 43:304–310

    PubMed  CAS  Google Scholar 

  16. Smiley ST, Reers M, Mottola-Hartshorn C et al (1991) Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1. Proc Natl Acad Sci USA 88:3671–3675

    Article  PubMed  CAS  Google Scholar 

  17. Hitomi J, Katayama T, Eguchi Y et al (2004) Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Abeta-induced cell death. J Cell Biol 165:347–356

    Article  PubMed  CAS  Google Scholar 

  18. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 28:1309–1312

    Google Scholar 

  19. Zamzami N, Marchetti P, Castedo M et al (1995) Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J Exp Med 1:367–377

    Article  Google Scholar 

  20. Matzno S, Yamaguchi Y, Akiyoshi T et al (2008) An attempt to evaluate the effect of vitamin K3 using as an enhancer of anticancer agents. Biol Pharm Bull 31:1270–1273

    Article  PubMed  CAS  Google Scholar 

  21. Salido M, Gonzalez JL, Vilches J (2007) Loss of mitochondrial membrane potential is inhibited by bombesin in etoposide-induced apoptosis in PC-3 prostate carcinoma cells. Mol Cancer Ther 6:1292–1299

    Article  PubMed  CAS  Google Scholar 

  22. Warburg O (1930) The metabolism of tumors. London Constable Co. Ltd, London

    Google Scholar 

  23. Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  PubMed  CAS  Google Scholar 

  24. Hockenbery DM (2002) A mitochondrial achilles heel in cancer? Cancer Cell 2:1–2

    Article  PubMed  CAS  Google Scholar 

  25. Carew JS, Huang P (2002) Mitochondrial defects in cancer. Mol Cancer I:9

    Article  Google Scholar 

  26. Alberts B, Johnson A Lewis J et al (2002) The cell cycle and programmed cell death. In: Molecular biology of the cell, 4th edn. Garland Science, New York, pp 983–1026

  27. Alnemri ES, Livingston DJ, Nicholson DW et al (1996) Human ICE/CED-3 protease nomenclature. Cell 18:171

    Article  Google Scholar 

  28. Katayama T, Imaizumi K, Manabe T et al (2004) Induction of neuronal death by ER stress in Alzheimer’s disease. J Chem Neuroanat 28:67–78

    Article  PubMed  CAS  Google Scholar 

  29. Kim SJ, Zhang Z, Hitomi E et al (2006) Endoplasmic reticulum stress-induced caspase-4 activation mediates apoptosis and neurodegeneration in INCL. Hum Mol Genet 15:1826–1834

    Article  PubMed  CAS  Google Scholar 

  30. Liang Y, Yan C, Schor NF (2001) Apoptosis in the absence of caspase-3. Oncogene 4:6570–6578

    Article  CAS  Google Scholar 

  31. Duthie SJ, Grant MH (1989) The toxicity of menadione and mitozantrone in human liver-derived Hep G2 hepatoma cells. Biochem Pharmacol 38:1247–1255

    Article  PubMed  CAS  Google Scholar 

  32. Mauzeroll J, Bard AJ, Owhadian O et al (2004) Menadione metabolism to thiodione in hepatoblastoma by scanning electrochemical microscopy. Proc Natl Acad Sci USA 101:17582–17587

    Article  PubMed  CAS  Google Scholar 

  33. Di Monte D, Ross D, Bellomo G et al (1984) Alterations in intracellular thiol homeostasis during the metabolism of menadione by isolated rat hepatocytes. Arch Biochem Biophys 235:334–342

    Article  PubMed  CAS  Google Scholar 

  34. Park C, So HS, Shin CH et al (2003) Quercetin protects the hydrogen peroxide-induced apoptosis via inhibition of mitochondrial dysfunction in H9c2 cardiomyoblast cells. Biochem Pharmacol 66:1287–1295

    Article  PubMed  CAS  Google Scholar 

  35. Petronilli V, Penzo D, Scorrano L et al (2001) The mitochondrial permeability transition, release of cytochrome c and cell death: correlation with the duration of pore openings in situ. J Biol Chem 276:12030–12034

    Article  PubMed  CAS  Google Scholar 

  36. James AM, Murphy MP (2002) How mitochondrial damage affects cell function. J Biomed Sci 9:475–487

    Article  PubMed  CAS  Google Scholar 

  37. Lim ML, Lum MG, Hansen TM et al (2002) On the release of cytochrome c from mitochondria during cell death signaling. J Biomed Sci 9:488–506

    PubMed  CAS  Google Scholar 

  38. Lawen A (2003) Apoptosis an introduction. Bioessays 25:888–896

    Article  PubMed  CAS  Google Scholar 

  39. Kuznetsov AV, Usson Y, Leverve X et al (2004) Subcellular heterogeneity of mitochondrial function and dysfunction: evidence obtained by confocal imaging. Mol Cell Biochem 256–257:359–365

    Article  PubMed  Google Scholar 

  40. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312

    Article  PubMed  CAS  Google Scholar 

  41. Kroemer G, Dallaporta B, Resche-Rigon M (1998) The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol 60:619–642

    Article  PubMed  CAS  Google Scholar 

  42. Gross A, McDonnell JM, Korsmeyer SJ (1999) BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13:1899–1911

    Article  PubMed  CAS  Google Scholar 

  43. Obeng EA, Boise LH (2005) Caspase-12 and caspase-4 are not required for caspase-dependent endoplasmic reticulum stress-induced apoptosis. J Biol Chem 280:29578–29587

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumio Matzno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akiyoshi, T., Matzno, S., Sakai, M. et al. The potential of vitamin K3 as an anticancer agent against breast cancer that acts via the mitochondria-related apoptotic pathway. Cancer Chemother Pharmacol 65, 143–150 (2009). https://doi.org/10.1007/s00280-009-1016-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-009-1016-7

Keywords

Navigation