Skip to main content

Advertisement

Log in

Combination analyses of anti-cancer drugs on human neuroendocrine tumor cell lines

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

There is a large need for better pharmacological treatment of neuroendocrine tumors. The aim of this study was to investigate and quantify the cytotoxic potentiating effects resulting from a combination of five substances, NSC 95397, emetine, CGP-74514A hydrochloride, Brefeldin A and sanguinarine chloride, chosen from a previous screening of 1,280 pharmacologically active agents on neuroendocrine tumor cells, with standard cytotoxic agents currently used in the treatment of neuroendocrine tumors.

Method

The human pancreatic carcinoid cell line BON-1, human typical bronchial carcinoid cell line NCI-H727 and the human atypical bronchial carcinoid cell line NCI-H720 were used. Combinations between doxorubicin, etoposide, oxaliplatin, docetaxel, and each one of the five agents were studied and simultaneous exposures were explored using the median-effect method.

Results

Most of the combinations of NSC-95397 and emetine with doxorubicin, etoposide, docetaxel, and oxaliplatin showed synergism, and their remaining combinations were additive. Almost all of the CGP-74514A hydrochloride interactions were additive, while brefeldin A and sanguinarine displayed less synergy but more additive and antagonistic interactions in combination with the standard drugs.

Conclusion

The synergistic and additive interactions make NSC-95397, emetine, and CGP-74514A hydrochloride potential candidates for incorporation into combination chemotherapy regimens and these drugs might be the suitable candidates for further clinical studies in patients with bronchial carcinoids and pancreatic endocrine tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gustafsson BI, Kidd M, Chan A, Malfertheiner MV, Modlin IM (2008) Bronchopulmonary neuroendocrine tumors. Cancer 113:5–21

    Article  PubMed  CAS  Google Scholar 

  2. Beasley MB, Brambilla E, Travis WD (2005) The 2004 World Health Organization classification of lung tumors. Semin Roentgenol 40:90–97

    Article  PubMed  Google Scholar 

  3. Granberg D, Eriksson B, Wilander E, Grimfjard P, Fjallskog ML, Oberg K, Skogseid B (2001) Experience in treatment of metastatic pulmonary carcinoid tumors. Ann Oncol 12(10):1383–1391

    Article  PubMed  CAS  Google Scholar 

  4. Oberg K (1999) Neuroendocrine gastrointestinal tumors—a condensed overview of diagnosis and treatment. Ann Oncol 10(Suppl 2):S3–S8

    Article  PubMed  Google Scholar 

  5. Shah MH, Young D, Kindler HL, Webb I, Kleiber B, Wright J, Grever M (2004) Phase II study of the proteasome inhibitor bortezomib (PS-341) in patients with metastatic neuroendocrine tumors. Clin Cancer Res 10:6111–6118

    Article  PubMed  CAS  Google Scholar 

  6. Beasley MB, Thunnissen FB, Brambilla E, Hasleton P, Steele R, Hammar SP, Colby TV, Sheppard M, Shimosato Y, Koss MN, Falk R, Travis WD (2000) Pulmonary atypical carcinoid: predictors of survival in 106 cases. Hum Pathol 31:1255–1265

    Article  PubMed  CAS  Google Scholar 

  7. Jonnakuty CG, Mezitis SG (2007) Pulmonary atypical carcinoid tumor with metastatic involvement of the pituitary gland causing functional hypopituitarism. Endocr Pract 13:291–295

    PubMed  Google Scholar 

  8. Moertel CG, Lefkopoulo M, Lipsitz S, Hahn RG, Klaassen D (1992) Streptozocin–doxorubicin, streptozocin–fluorouracil or chlorozotocin in the treatment of advanced islet-cell carcinoma. N Engl J Med 326(8):519–523

    Article  PubMed  CAS  Google Scholar 

  9. McCollum AD, Kulke MH, Ryan DP, Shulman LN, Mayer RJ, Bartel S, Bartel S, Fuchs CS (2004) Lack of efficacy of streptozocin and doxorubicin in patients with advanced pancreatic endocrine tumors. Am J Clin Oncol 27:485–488

    Article  PubMed  CAS  Google Scholar 

  10. Chou TC, Talalay P (1984) Quantitative analysis of dose–effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55

    Article  PubMed  CAS  Google Scholar 

  11. Larsson DE, Lovborg H, Rickardson L, Larsson R, Oberg K, Granberg D (2006) Identification and evaluation of potential anti-cancer drugs on human neuroendocrine tumor cell lines. Anticancer Res 26(6B):4125–4129

    PubMed  CAS  Google Scholar 

  12. Wink M, Schmeller T, Latz-Brüning B (1998) Modes of action of allelochemical alkaloids: interaction with neuroreceptors, DNA, and other molecular targets. J Chem Ecol 24:1881–1937

    Article  CAS  Google Scholar 

  13. Larsson R, Kristensen J, Sandberg C, Nygren P (1992) Laboratory determination of chemotherapeutic drug resistance in tumor cells from patients with leukemia, using a fluorometric microculture cytotoxicity assay (FMCA). Int J Cancer 50:177–185

    Article  PubMed  CAS  Google Scholar 

  14. Rickardson L, Fryknas M, Dhar S, Lovborg H, Gullbo J, Rydaker M, Nygren P, Gustafsson MG, Larsson R, Isaksson A (2005) Identification of molecular mechanisms for cellular drug resistance by combining drug activity and gene expression profiles. Br J Cancer 93:483–492

    Article  PubMed  CAS  Google Scholar 

  15. Valeriote F, Lin H (1975) Synergistic interaction of anticancer agents: a cellular perspective. Cancer Chemother Rep 59(5):895–900

    PubMed  CAS  Google Scholar 

  16. Kosmidis PA (2004) Treatment of carcinoid of the lung. Curr Opin Oncol 16:146–149

    Article  PubMed  Google Scholar 

  17. Oberg K (2001) Chemotherapy and biotherapy in the treatment of neuroendocrine tumours. Ann Oncol 12(Suppl 2):S111–S114

    Article  PubMed  Google Scholar 

  18. Ducreux M, Baudin E, Schlumberger M (2002) Treatment strategy of neuroendocrine tumors. Rev Prat 52(3):290–296

    PubMed  Google Scholar 

  19. Warner RR (2003) Carcinoid case presentation and discussion: the American perspective. Endocr Relat Cancer 10:489–496

    Article  PubMed  CAS  Google Scholar 

  20. Kulke MH, Kim H, Stuart K, Clark JW, Ryan DP, Vincitore M, Mayer RJ, Fuchs CS (2004) A phase II study of docetaxel in patients with metastatic carcinoid tumors. Cancer Invest 22:353–359

    Article  PubMed  CAS  Google Scholar 

  21. Ansell SM, Pitot HC, Burch PA, Kvols LK, Mahoney MR, Rubin J (2001) A phase II study of high-dose paclitaxel in patients with advanced neuroendocrine tumors. Cancer 91:1543–1548

    Article  PubMed  CAS  Google Scholar 

  22. Vogt A, McDonald PR, Tamewitz A, Sikorski RP, Wipf P, Skoko JJ 3rd, Lazo JS (2008) A cell-active inhibitor of mitogen-activated protein kinase phosphatases restores paclitaxel-induced apoptosis in dexamethasone-protected cancer cells. Mol Cancer Ther 7:330–340

    Article  PubMed  CAS  Google Scholar 

  23. Cazales M, Boutros R, Brezak MC, Chaumeron S, Prevost G, Ducommun B (2007) Pharmacologic inhibition of CDC25 phosphatases impairs interphase microtubule dynamics and mitotic spindle assembly. Mol Cancer Ther 6:318–325

    Article  PubMed  CAS  Google Scholar 

  24. Street EW (1972) Cyclophosphamide plus emetine in lung cancer. Lancet 2(7773):381–382

    Article  PubMed  CAS  Google Scholar 

  25. Moller M, Herzer K, Wenger T, Herr I, Wink M (2007) The alkaloid emetine as a promising agent for the induction and enhancement of drug-induced apoptosis in leukemia cells. Oncol Rep 8:737–744

    Google Scholar 

  26. Combs AB, Acosta D (1990) Toxic mechanisms of the heart: a review. Toxicol Pathol 18(4 Pt 1):583–596

    PubMed  CAS  Google Scholar 

  27. Pires MM, Hrycyna CA, Chmielewski J (2006) Bivalent probes of human multidrug transporter P-glycoprotein. Biochemistry 45:11695–11702

    Article  PubMed  CAS  Google Scholar 

  28. Selvi BR, Pradhan SK, Shandilya J, Das C, Sailaja BS, Shankar GN, Gadad SS, Reddy A, Dasgupta D, Kundu TK (2009) Sanguinarine interacts with chromatin, modulates epigenetic modifications, and transcription in the context of chromatin. Chem Biol 16(2):203–216

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Linda Rickardson, Malin Wickström, and Lena Lenhammar for valuable technical assistance. This study was financially supported by grants from Lions Cancer Research Fund at Uppsala University Hospital.

Conflict of interest statement

No potential conflicts of interest were disclosed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhana E. Larsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larsson, D.E., Hassan, S., Larsson, R. et al. Combination analyses of anti-cancer drugs on human neuroendocrine tumor cell lines. Cancer Chemother Pharmacol 65, 5–12 (2009). https://doi.org/10.1007/s00280-009-0997-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-009-0997-6

Keywords

Navigation