Skip to main content

Advertisement

Log in

Hydroxyurea and hydroxamic acid derivatives as antitumor drugs

  • Mini Review
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Hydroxyurea has been used for decades and it is still valuable for the treatment of some types of cancer. It inhibits ribonucleotide reductase (RNR) enzyme known to be crucial in the conversion of ribonucleotides into deoxyribonucleotides. However, nowadays the main focus has shifted to structurally similar hydroxamic acid derivatives that target specific enzymes involved in cancer progression such as histone deacetylases, matrix metalloproteinases and also RNR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dresler WFC, Stein R (1869) Ueber den Hydroxylharnstoff. Justus Liebigs. Ann Chem Pharmacol 150:242–252

    Google Scholar 

  2. Philips FS, Sternberg SS, Schwartz HS, Cronin AP, Sodergren JE, Vidal PM (1967) Hydroxyurea. I. Acute cell death in proliferating tissues in rats. Cancer Res 27:61–74

    PubMed  CAS  Google Scholar 

  3. Rabes HM, Iseler G, Czichos S, Tuczek HV (1977) Synchronization of hepatocellular DNA synthesis in regenerating rat liver by continious infusion of hydroxyurea. Cancer Res 37:1105–1111

    PubMed  CAS  Google Scholar 

  4. Rosenthal F, Wislicki L, Kollek L (1928) Uber die beziehungen von schwersten blutgiften zu abbauprodukten des eiweisses. Klin Wochenschr 7:972–977

    CAS  Google Scholar 

  5. Yarbro JW, Kennedy BJ, Barnum CP (1965) Hydroxyurea inhibition of DNA synthesis in ascites tumor. Proc Natl Acad Sci US 53:1033–1035

    CAS  Google Scholar 

  6. Young CW, Hodas S (1964) Hydroxyurea inhibitory effect on DNA metabolism. Science 146:1172–1174

    PubMed  CAS  Google Scholar 

  7. Adams RLP, Lindsay JG (1967) Hydroxyurea. Reversal of inhibition and use as a cell-synchronizing agent. J Biol Chem 242:1314–1317

    PubMed  CAS  Google Scholar 

  8. Krakoff IH, Brown NC, Reichard P (1968) Inhibition of ribonucleoside diphosphate reductase by hydroxyurea. Cancer Res 28:1559–1565

    PubMed  CAS  Google Scholar 

  9. Mutschler E, Derendorf H (1995) Drug actions, basic principles and therapeutics aspects. Medpharm Scientific Publishers, Stuttgart

    Google Scholar 

  10. Charache S, Dover GJ, Moyer MA (1987) Hydroxyurea-induced augmentation of fetal hemoglobin production in patients with sickle cell anemia. Blood 69:109

    PubMed  CAS  Google Scholar 

  11. Charache S, Terrin ML, Moore RD, Dover GJ, Barton FB, Eckert SV, NcMahon RP, Bonds DR (1995) Effect of hydroxyurea on frequency of painful crises in sickle cell anemia. Investigators of the multicenter study of hydroxyurea in sickle cell anemia. N Engl J Med 332:1317–1322

    PubMed  CAS  Google Scholar 

  12. Schechter AN, Rodgers GP (1995) Sickle cell anemia: basic research reaches the clinic. N Engl J Med 332:1372–1374

    PubMed  CAS  Google Scholar 

  13. Gao WY, Cara A, Gallo RC, Lori F (1993) Low levels of deoxynucleotides in peripheral blood lymphocytes: a strategy to inhibit human immunodeficiency virus type 1 replication. Proc Natl Acad Sci USA 90:8925–8928

    PubMed  CAS  Google Scholar 

  14. Cortelazzo S, Finazzi G, Ruggeri M, Vestri O, Galli M, Rodeghiero F, Barbui T (1995) Hydroxyurea for patients with essential thrombocythemia and a high risk of thrombosis. New Eng J Med 332:1132–1136

    PubMed  CAS  Google Scholar 

  15. Rosten M (1971) Hydroxyurea: a new antimetabolite in the treatment of psoriasis. Br J Dermatol 85:177–181

    PubMed  CAS  Google Scholar 

  16. Donovan PB, Kaplan ME, Goldberg JD, Tatarsky I, Najean Y, Silberstein EB, Knospe WH, Laszlo J, Mack K, Berk PD, Wasserman LR (2006) Treatment of polycythemia vera with hydroxyurea. Am J Hematology 17:329–334

    Google Scholar 

  17. Hannessian S, Johnstone S (1999) Synthesis of hydroxamic esters via alkoxyaminocarbonylation of β-dicarbonyl compounds. J Org Chem 64:5896–5903

    Google Scholar 

  18. Kolasa T, Steward AO, Brooks CDW (1996) Asymetric synthesis of (R)-N-3-butyn-2-yl-N-hydroxyurea, a key intermediate for 5-lipoxygenase inhibitors. Tetrahedron: Asymetry 7:729–736

    CAS  Google Scholar 

  19. Nandy P, Lien EJ, Avramis VI (1999) Inhibition of ribonucleotide reductase by a new class of isoindole derivatives: drug synergism with cytarabine (ara-C) and induction of cellular apoptosis. Anticancer Res 19:1625–1633

    PubMed  CAS  Google Scholar 

  20. Kleeman A, Engel J, Kutscher B, Reichert D (2001) Pharmaceutical substances, synthesis, patents, applications, 4th edn. Thieme, Stuttgart

    Google Scholar 

  21. Slater ML (1973) Effect of reversible inhibition of deoxyribonucleic acid synthesis on the yeast cell cycle. J Bacteriol 113:263–270

    PubMed  CAS  Google Scholar 

  22. Lassmann G, Thelander L, Graslund A (1992) EPR stopped-flow studies of the reaction of the tyrosyl radical of protein R2 from ribonucleotide reductase with hydroxyurea. Biochem Biophys Res Commun 188:879–887

    PubMed  CAS  Google Scholar 

  23. Gwilt PR, Tracewell WG (1998) Pharmacokinetics and pharmacodynamics of hydroxyurea. Clin Pharmacokinet 34:347–358

    PubMed  CAS  Google Scholar 

  24. Jiang J, Jordan SJ, Barr DP, Gunther MR, Maeda H, Mason RP (1997) In vivo production of nitric oxide in rats after administration of hydroxyurea. Mol Pharmacol 52:1081–1086

    PubMed  CAS  Google Scholar 

  25. King SB (2003) The nitric oxide producing reactions of hydroxyurea. Curr Med Chem 10:437–452

    PubMed  CAS  Google Scholar 

  26. Burrkitt MJ, Raft A (2006) Nitric oxide generation from hydroxyurea: significance and implications for leukemogenesis in the management of myeloproliferative disorders. Blood 107:2219–2222

    Google Scholar 

  27. Young CW, Schochetman G, Hodas S, Balis ME (1967) Inhibition of DNA synthesis by hydroxyurea: structure–activity relationship. Cancer Res 27:535–540

    PubMed  CAS  Google Scholar 

  28. Elford HR, Wampler GL, van’t Riet B (1979) New ribonucleotide reductase inhibitors with antineoplastic activity. Cancer Res 39:844–851

    PubMed  CAS  Google Scholar 

  29. Parrish DA, Zou Z, Allen CL, Day CS, King SB (2005) A convenient method for the synthesis of N-hydroxyureas. Tetrahedron Lett 46:8841–8843

    CAS  Google Scholar 

  30. Scozzafava A, Supuran CT (2003) Hydroxyurea is a carbonic anhydrase inhibitor. Bioorg Med Chem 11:2241–2246

    PubMed  CAS  Google Scholar 

  31. Elford H (1968) Effect of hydroxyurea on ribonucleotide reductase. Biochem Biophys Res Commun 33:129–135

    PubMed  CAS  Google Scholar 

  32. Moore EC (1969) The effect of ferrous ion and dithioerythritol on inhibition by hydroxyurea of ribonucleotide reductase. Cancer Res 29:291–295

    PubMed  CAS  Google Scholar 

  33. Rodriguez GI, Kuhn JG, Weiss GR, Hilsenbeck SG, Eckardt JR, Thurman A, Rinaldi DA, Hodges S, Von Hoff DD, Rowinsky EK (1998) A bioavailability and pharmacokinetic study of oral and intravenous hydroxyurea. Blood 91:1533–1541

    PubMed  CAS  Google Scholar 

  34. Donehower RC (1992) An overview of the clinical experience with hydroxyurea. Semin Oncol 19:11–19

    PubMed  CAS  Google Scholar 

  35. Gandhi V, Plunkett W, Kantarjian H, Talpaz M, Robertson LE, O’Brien S (1998) Cellular pharmacodynamics and plasma pharmacokinetics of parenterally infused hydroxyurea during a phase I clinical trial in chronic myelogenous leukemia. J Clin Oncol 16:2321–2331

    PubMed  CAS  Google Scholar 

  36. Kacew S (1989) Drug toxicity and metabolism in pediatrics. CRC Press, Boca Raton

    Google Scholar 

  37. Ravandi-Kashani F, Cortes J, Cohen P, Talpaz M, O’Brien S, Markowitz A, Kantarjian H (1999) Cutaneous ulcers associated with hydroxyurea therapy in myeloproliferative disorders. Leuk Lymphoma 35:109–118

    PubMed  CAS  Google Scholar 

  38. Sirieix ME, Debure C, Baudot N, Dubertret L, Roux ME, Morel P, Frances C, Loubeyres S, Beylot C, Lambert D, Humbert P, Gauthier O, Dandurand M, Guillot B, Vaillant L, Lorette G, Bonnetblanc JM, Lok C, Denoeux JP (1999) Leg ulcers and hydroxyurea. Arch Dermatol 135:818–820

    PubMed  CAS  Google Scholar 

  39. Richard M, Truchetet F, Friedel J, Leclech C, Heid E (1989) Skin lesions simulating chronic dermatomyositis during long-term hydroxyurea therapy. J Am Acad Dermatol 21:797–799

    PubMed  CAS  Google Scholar 

  40. Velez A, Lopez-Rubio F, Moreno JC (1998) Chronic hydroxyurea-induced dermatomyositis-like eruption with severe dermal elastosis. Clin Exp Dermatol 23:94–95

    PubMed  CAS  Google Scholar 

  41. Gropper CA, Don PC, Sadjadi MM (1993) Nail and skin hyperpigmentation associated with hydroxyurea therapy for polycythemia vera. Int J Dermatol 32:731–733

    PubMed  CAS  Google Scholar 

  42. De Montalembert M, Belloy M, Bernaudin F, Gouraud F, Capdeville R, Mardini R, Philippe N, Jais JP, Bardakdijan J, Ducrocq R, Maier-Redelsperger M, Elion J, Labie D, Girot R (1997) Three-year follow-up of hxdroxyurea treatment in severely ill children with sickle cell disease. J Pediatr Hematol/Oncol 19:313–318

    Google Scholar 

  43. Silver RT, Woolf SH, Hehlmann R, Appelbaum FR, Anderson J, Bennett C, Goldman JM, Guilhot F, Kantarjian HM, Lichtin AE, Talpaz M, Tura S (1999) An evidence-based analysis of the effect of busulfan, hydroxyurea, interferon, and allogeneic bone marrow transplantation in treating the chronic phase of chronic. Blood 94:1517–1536

    PubMed  CAS  Google Scholar 

  44. Goldman JM (1997) Optimizing treatment for chronic myeloid leukemia. New Engl J Med 337:270–271

    PubMed  CAS  Google Scholar 

  45. Hehlmann R, Berger U, Pfirrmann M, Hochhaus A, Metzgeroth G, Maywald O, Hasford J, Reiter A, Hossfeld DK, Kolb HJ, Löffler H, Pralle H, Quei er W, Griesshammer M, Nerl C, Kuse R, Tobler A, Eimermacher H, Tichelli A, Aul C, Wilhelm M, Fischer JT, Perker M, Scheid C, Schenk M, Wei J, Meier CR, Kremers S, Labedzki., Schmeiser T, Lohrmann H-P, Heimpel P, the German CML-Study Group (2003) Randomized comparison of interferon alpha and hydroxyurea with hydroxyurea monotherapy in chronic myeloid leukemia (CML-study II): prolongation of survival by the combination of interferon alpha and hydroxyurea. Leukemia 17:1529–1537

  46. Piver MS, Barlow JJ, Vongtama V, Blumenson L (1983) Hydroxyurea: a radiation potentiator in carcinoma of the uterine cervix. A randomized double-blind study. Am J Obstet Gynecol 147:803–808

    PubMed  CAS  Google Scholar 

  47. Hreshchyshyn MM, Aron BS, Boronow RC, Franklin EW 3rd, Shingleton HM, Blessing JA (1979) Hydroxyurea or placebo combined with radiation to treat stages IIIB and IV cervical cancer confined to the pelvis. Int J Radiat Oncol Biol Phys 5:317–322

    PubMed  CAS  Google Scholar 

  48. Schrell UMH, Rittig MG, Koch U, Marschalek R, Anders M (1996) Hydroxyurea for treatment of unresectable meningiomas. Lancet 348:888–889

    PubMed  CAS  Google Scholar 

  49. Schrell UMH, Rittig MG, Anders M, Kiesewetter F, Marschalek R, Koch UH et al (1997) Hydroxyurea for treatment of unresectable and recurrent meningiomas. I. Inhibition of primary human meningioma cells in culture and in meningioma transplants by induction of the apoptotic pathway. J Neurosurg 86:845–852

    PubMed  CAS  Google Scholar 

  50. Cammack KV, Taylor RM (1972) Advanced neoplasm of head and neck. Treatment with combined radiation and chemotherapy. Rocky Mt Med J 69:54–56

    PubMed  CAS  Google Scholar 

  51. Richards GJ, Chambers RG (1973) Hydroxyurea in the treatment of neoplasm of head and neck. Am J Surg 126:513–518

    PubMed  Google Scholar 

  52. Hussey DH, Abrams P (1975) Combined therapy in advanced head and neck cancer: hydroxyurea and radiotherapy. Prog Clin Cancer 6:79–86

    PubMed  CAS  Google Scholar 

  53. Lerner HJ (1978) Concomitant hydroxyurea and irradiation. Clinical experience with 100 patients with advanced head and neck cancer at Pennsylvania Hospital. Am J Surg 134:505–550

    Google Scholar 

  54. Blasberg RG, Patlack C, Fenstermacher JD (1975) Intrathecal chemotherapy: brain tissue profiles after ventriculocisternal perfusion. J Pharmacol Exp Ther 195:73–83

    PubMed  CAS  Google Scholar 

  55. Walkinshaw DR, Yang XJ (2008) Histone deacetylase inhibitors as novel anticancer therapeutics. Curr Oncol 15:237–243

    PubMed  CAS  Google Scholar 

  56. Rothenberg ML, Nelson AR, Hande KR (1999) New drugs on the horizon: matrix metalloproteinase inhibitors. Stem Cells 17:237–240

    PubMed  CAS  Google Scholar 

  57. Mahlknecht U, Hoelzer D (2000) Histone acetylation modifiers in the pathogenesis of malignant disease. Mol Med 6:623–644

    PubMed  CAS  Google Scholar 

  58. Cress WD, Seto E (2000) Histone deacetylases, transcriptional control, and cancer. J Cell Physiol 184:1–16

    PubMed  CAS  Google Scholar 

  59. Marks PA, Rifkind RA, Richon VM, Breslow R (2001) Inhibitors of histone deacetylase are potentially effective anticancer agents. Clin Cancer Res 7:759–760

    PubMed  CAS  Google Scholar 

  60. Johnstone RW (2002) Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat Rev Drug Discov 1:287–299

    PubMed  CAS  Google Scholar 

  61. Duvic M, Vu J (2007) Vorinostat: a new oral histone deacetylase inhibitor approved for cutaneous T cell lymphoma. Expert Opin Investig Drugs 16:1111–1120

    PubMed  CAS  Google Scholar 

  62. Nelson AR, Fingleton B, Rothenberg ML, Matrisian LM (2000) Matrix metalloproteinases: biologic activity and clinical implications. J Clin Oncol 18:1135–1149

    PubMed  CAS  Google Scholar 

  63. Avendano C, Menendez JC (2008) Medicinal chemistry of anticancer drugs. Elsevier, Amsterdam

    Google Scholar 

  64. Cross JB, Duca JS, Kaminski JJ, Madison VS (2002) The active site of a zinc-dependent metalloproteinase influences the computed pKa of ligands coordinated to the catalytic zinc ion. J Am Chem Soc 124:11004–11007

    PubMed  CAS  Google Scholar 

  65. Botos I, Scapozza L, Zhang D, Liotta LA, Meyer EF (1996) Batimastat, a potent matrix mealloproteinase inhibitor, exhibits an unexpected mode of binding. Proc Nat Acad Sci USA 93:2749–2754

    PubMed  CAS  Google Scholar 

  66. Rasmussen HS, Teicher BA (eds) (1999) Antiangiogenic agents in cancer therapy. Humana Press, Totowa

    Google Scholar 

  67. Brown PD (1999) Clinical studies with matrix metalloproteinase inhibitors. APMIS 107:174–180

    Article  PubMed  CAS  Google Scholar 

  68. Wojtowicz-Praga S, Low J, Marshall J, Ness E, Dickson R, Barter J, Sale M, McCann P, Moore J, Cole A, Hawkins MJ (1996) Phase I trial of a novel matrix metalloproteinase inhibitor batimastat (BB-94) in patients with advanced cancer. Invest New Drugs 14:193–202

    PubMed  CAS  Google Scholar 

  69. Macaulay VM, O’Byrne KJ, Saunders MP, Braybrooke JP, Long L, Gleeson F, Mason CS, Harris AL, Brown P, Talbot DC (1999) Phase I study of intrapleural batimastat (BB-94), a matrix metalloproteinase inhibitor, in the treatment of malignant pleural effusions. Clin Cancer Res 5:513–520

    PubMed  CAS  Google Scholar 

  70. Beattie GJ, Smyth JF (1998) Phase I study of intraperitoneal metalloproteinase inhibitor BB94 in patients with malignant ascites. Clin Cancer Res 4:1899–1902

    PubMed  CAS  Google Scholar 

  71. Rothenberg ML, Nelson AR, Hande KR (1998) New drugs on the horizon: matrix metalloproteinase inhibitors. Oncologist 3:271–274

    PubMed  CAS  Google Scholar 

  72. Shalinsky DR, Brekken J, Zou H, McDermott CD, Forsyth P, Edwards D, Margosiak S, Bender S, Truitt G, Wood A, Varki NM, Appelt K (1999) Broad antitumor and antiangiogenic activities of AG3340, a potent and selective MMP inhibitor undergoing advanced oncology clinical trials. Ann N Y Acad Sci 878:236–270

    PubMed  CAS  Google Scholar 

  73. Marks PA, Dokmanovic M (2005) Histone deacetylase inhibitors: discovery and development as anticancer agents. Expert Opin Investig Drugs 14:1497–1511

    PubMed  CAS  Google Scholar 

  74. Finnin MS, Donigian JR, Venitz J, Figg WD (1999) Rational development of histone deacetylase homologue bound to TSA and SAHA. Nature 401:188–193

    PubMed  CAS  Google Scholar 

  75. Acharya MR, Sparreboom A, Venitz J, Figg WD (2005) Rational development of histone deacetylase inhibitors as anticancer agents: a review. Mol Pharmacol 68:917–932

    PubMed  CAS  Google Scholar 

  76. Monneret C (2005) Histone deacetylase inhibitors. Eur J Med Chem 40:1–13

    PubMed  CAS  Google Scholar 

  77. Lin HY, Chen CS, Lin SP, Weng JR, Chen CS (2006) Targeting histone deacetylase in cancer therapy. Med Res Rev 26:397–413

    PubMed  CAS  Google Scholar 

  78. Sowa Y, Orita T, Minamikawa S, Nakano K, Mizuno T, Nomura H, Sakai T (1997) Histone deacetylase inhibitor activates the WAF1/Cip1 gene promoter through the Sp1 sites. Biochem Biophys Res Commun 241:142–150

    PubMed  CAS  Google Scholar 

  79. Hirose T, Sowa Y, Takahashi S, Saito S, Yasuda C, Shindo N, Furuichi K, Sakai T (2003) p53-independent induction of Gadd45 by histone deacetylase inhibitor: coordinate regulation by transcription factors Oct-1 and NF-Y. Oncogene 22:7762–7773

    PubMed  CAS  Google Scholar 

  80. Takai N, Ueda T, Nishida M, Nasu K, Narahara H (2008) Histone deacetylase inhibitors induce growth inhibition, cell cycle arrest and apoptosis in human choriocarcinoma cells. Int J Mol Med 21:109–115

    PubMed  CAS  Google Scholar 

  81. Ouaissi M, Ouaissi A (2006) Histone deacetylase enzymes as potential drug targets in cancer and parasitic diseases. Biomed Biotechnol 2006:13474–13477

    Google Scholar 

  82. Hoekstra R, Eskens FALM, Verweij J (2001) Matrix metalloproteinase inhibitors: current developments and future perspectives. Oncologist 6:415–427

    PubMed  CAS  Google Scholar 

  83. Zucker S, Cao J, Chen W-T (2000) Critical appraisal of the use of matrix metalloproteinase inhibitors in cancer treatment. Oncogene 19:6642–6650

    PubMed  CAS  Google Scholar 

  84. Lee M-J, Kim YS, Kummar S, Giaccone G, Trepel JB (2008) Histone deacetylase inhibitors in cancer therapy. Curr Opin Oncol 20:639–649

    PubMed  CAS  Google Scholar 

  85. Santini V, Gozzini A, Ferrari G (2007) Histone deacetylase inhibitors: molecular and biological activity as a premise to clinical application. Curr Drug Metab 8:383–393

    PubMed  CAS  Google Scholar 

  86. Lindemann RK, Gabrielli B, Johnstone RW (2004) Histone-deacetylase inhibitors for the treatment of cancer. Cell Cycle 3:779–788

    PubMed  CAS  Google Scholar 

  87. Marks PA, Richon VM, Miller T, Kelly WK (2004) Histone deacetylase inhibitors. Adv Cancer Res 91:137–168

    PubMed  CAS  Google Scholar 

  88. Rosato RR, Grant S (2004) Histone deacetylase inhibitors in clinical development. Expert Opin Investig Drugs 13:21–38

    PubMed  CAS  Google Scholar 

  89. Drummond DC, Noble CO, Kirpotin DB, Guo Z, Scott GK, Benz CC (2005) Clinical development of histone deacetylase inhibitors as anticancer agents. Annu Rev Pharmacol Toxicol 45:495–528

    PubMed  CAS  Google Scholar 

  90. Kelly WK, Marks AP (2005) Drug insight: Histone deacetylase inhibitors development of the new targeted anticancer agent suberolyanilide hydroxamic acid. Nat Clin Pract Oncol 2:1–8

    Google Scholar 

  91. Munster PN, Troso-Sandoval T, Rosen N (2001) The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces differentiation of human breast cancer cells. Cancer Res 61:8492–8497

    PubMed  CAS  Google Scholar 

  92. Luu TH, Morgan RJ, Leong L, Lim D, McNamara M, Portnow J, Frankel P, Smith DD, Doroshow JH, Gandara DR, Aparicio A, Somlo G, Wong C (2008) A phase ii trial of vorinostat (suberoylanilide hydroxamic acid) in metastatic breast cancer: a California Cancer Consortium Study. Clin Cancer Res 14:7138–7142

    PubMed  CAS  Google Scholar 

  93. Richardson P, Mitsiades C, Colson K, Reilly E, McBride L, Chiao J, Sun L, Ricker J, Rizvi S, Oerth C, Atkins B, Fearen I, Anderson K, Siegel D (2008) Phase I trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) in patients with advanced multiple myeloma. Leuk Lymphoma 49:502–507

    PubMed  CAS  Google Scholar 

  94. Crump M, Coiffier B, Jacobsen ED, Sun L, Ricker JL, Xie H, Frankel SR, Randolph SS, Cheson BD (2008) Phase II trial of oral vorinostat (suberoylanilide hydroxamic acid) in relapsed diffuse large-B cell lymphoma. Ann Oncol 19:964–969

    PubMed  CAS  Google Scholar 

  95. Modesitt SC, Sill M, Hoffman JS, Bender DP, Gynecologic Oncology Group (2008) A phase II study of vorinostat in the treatment of persistent or recurrent epithelial ovarian or primary peritoneal carcinoma: a Gynecologic Oncology Group study. Gynecol Oncol 109:182–186

    PubMed  CAS  Google Scholar 

  96. Blumenschein GR Jr, Kies MS, Papadimitrakopoulou VA, Lu C, Kumar AJ, Ricker JL, Chiao JH, Chen C, Frankel SR (2008) Phase II trial of the histone deacetylase inhibitor vorinostat (Zolinza, suberoylanilide hydroxamic acid, SAHA) in patients with recurrent and/or metastatic head and neck cancer. Invest New Drugs 26:81–87

    PubMed  CAS  Google Scholar 

  97. Ramalingam SS, Parise RA, Ramanathan RK, Lagattuta TF, Musguire LA, Stoller RG, Potter DM, Argiris AE, Zwiebel JA, Egorin MJ, Belani CP (2007) Phase I and pharmacokinetic study of vorinostat, a histone deacetylase inhibitor, in combination with carboplatin and paclitaxel for advanced solid malignancies. Clin Cancer Res 13:3605–3610

    PubMed  CAS  Google Scholar 

  98. Fang J, Shing Y, Wiederschain D, Yan L, Butterfield C, Jackson G, Harper J, Tamvakopoulos G, Moses MA (2000) Matrix metalloproteinase-2 is required for the switch to the angiogenic phenotype in a tumor model. Proc Natl Acad Sci USA 97:3884–3889

    PubMed  CAS  Google Scholar 

  99. Coussens LM, Fingleton B, Lynn M (2002) Matrisian matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295:2387–2392

    PubMed  CAS  Google Scholar 

  100. Boasberg P, Harbaugh BL, Eisenberger M, Harris J, Langleben A, Ahnmann F, Roth B, Berkheimer M, Ramussen H (1997) Marimastat in patients with hormone refractory prostate cancer: a dose-finding study. Proc Am Soc Clin Oncol 16:316a

    Google Scholar 

  101. Fielding J, Scholefield J, Stuart R, Hawkins R, McCulloch P, Maughan T, Seymour M, Van Custem E, Thorlacius-Ussing C, Hovendal C (2000) A randomized double-blind placebo-controlled study of marimistat in patients with inoperable gastric adenocarcinoma. Proc Am Soc Clin Oncol 19:240a

    Google Scholar 

  102. Price A, Shi Q, Morris D, Wilcox ME, Brasher PMA, Rewcastle NB, Shalinsky D, Zou H, Appelt K, Johnston RN, Yong VW, Edwards D, Forsyth P (1999) Marked inhibition of tumor growth in a malignant glioma tumor model by a novel synthetic matrix metalloproteinase inhibitor AG3340. Clin Cancer Res 5:845–854

    PubMed  CAS  Google Scholar 

  103. Santos O, McDermott CD, Daniels R, Appelt K (1997) Rodent pharmacokinetic and anti-tumor efficacy studies with a series of synthetic inhibitors of matrix metalloproteinases. Clin Exp Metastasis 15:499–508

    PubMed  CAS  Google Scholar 

  104. Bissett D, O’Byrne KJ, von Pawel J, Gatzemeier U, Price A, Nicolson M, Mercier R, Mazabel E, Penning C, Zhang MH, Collier MA, Shepherd FA (2005) Phase III study of matrix metalloproteinase inhibitor prinomastat in non-small-cell lung cancer. J Clin Oncol 23:842–849

    PubMed  CAS  Google Scholar 

  105. Opacic N, Barbaric M, Zorc B, Cetina M, Nagl A, Frkovic D, Kralj M, Pavelic K, Balzarini J, Andrei G, Snoeck R, De Clercq E, Raic-Malic S, Mintas M (2005) The novel l- and d-amino acid derivatives of hydroxyurea and hydantoins: synthesis, X-ray crystal structure study, and cytostatic and antiviral activity evaluations. J Med Chem 48:475–482

    PubMed  CAS  Google Scholar 

  106. Perkovic I, Butula I, Zorc B, Hock K, Kraljevic Pavelic S, Pavelic K, De Clercq E, Balzarini J, Mintas M (2008) Novel lipophilic hydroxyurea derivatives: synthesis, cytostatic and antiviral activity evaluations. Chem Biol Drug Des 71:546–553

    PubMed  CAS  Google Scholar 

  107. Yoshida M, Horinouchi S, Beppu T (1995) Trichostatin A and trapoxin: novel chemical probes for the role of histone acetylation in chromatin structure and function. BioEssays 17:423–430

    PubMed  CAS  Google Scholar 

  108. Richon VM, Emiliani S, Verdin E, Webb J, Breslow R, Rifkind RA, Marks PA (1998) A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proc Natl Acad Sci USA 95:3303–3307

    Google Scholar 

  109. Cohen LA, Amin S, Marks PA, Rifkind RA, Desai D, Richon VM (1999) Chemoprevention of carcinogen-induced mammary tumorigenesis by the hybrid polar cytodifferentiation agent, suberanilohydroxamic acid (SAHA). Anticancer Res 19:4999–5005

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This paper was financially supported by the Croatian Ministry of Science, Education and Sport’s grants entitled “Molecular characteristic of myofibroblasts derived from Dupuytren’s contracture” (098-0982464-2393). We greatly appreciate the financial help of the Foundation of Croatian Academy of Sciences and Arts.

Conflict of interest statement

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Saban.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saban, N., Bujak, M. Hydroxyurea and hydroxamic acid derivatives as antitumor drugs. Cancer Chemother Pharmacol 64, 213–221 (2009). https://doi.org/10.1007/s00280-009-0991-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-009-0991-z

Keywords

Navigation