Skip to main content
Log in

Thymidylate synthetase allelic imbalance in clear cell renal carcinoma

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the allelic status of the thymidylate synthetase (TYMS) gene, located at chromosome band 18p11.32, in renal cell carcinoma (RCC). TYMS is a key target of the 5-fluorouracil (5-FU)-based class of drugs, frequently considered in combination therapies in advanced RCC. TYMS variants, such as the TYMS polymorphic 5′-untranslated region variable number tandem repeat sequence (VNTR), are under investigation to guide 5-FU treatment. Yet, no information is available with regard to changes in TYMS allele frequencies in RCC malignances.

Methods

Blood and matched tumor samples were collected from 41 histological proven clear cell RCC affected patients (30 males, 11 females.). TYMS VNTR genotype was first determined in blood to identify heterozygotes employing PCR techniques. To evaluate for allelic imbalance, fragment analysis was performed both in blood and matched tumor DNA of the heterozygote patients. Microsatellite analysis, employing the markers D18S59 and D18S476 mapping, respectively, at the TYMS locus (18p11.32) and 1.5 Mb downstream of the TYMS gene sequence (18p11.31), was performed to confirm TYMS allelic imbalance in tumors.

Results

Germ-line TYMS VNTR distribution was: 2R/2R (19.5%), TYMS 2R/3R (36.6%) and TYMS 3R/3R (43.9%). Allelic imbalance for the TYMS tandem repeat region was detected in 26.6% of the heterozygote patients. Microsatellite analysis confirmed the allelic imbalance detected by TYMS VNTR analysis and revealed that the overall frequence of allelic imbalance of chromosome band 18p11.32 was 35%, while the overall allelic imbalance of chromosome band 18p11.31 was 28%.

Conclusions

By focusing on the TYMS polymorphic variants in renal cancer, we here provide evidence, to our knowledge, for the first time showing loss of 18p11.32 and 18p11.31 in renal cell carcinomas. As allelic imbalances involving TYMS locus may be an important variable affecting 5-FU responsiveness, this study may contribute to explain different responses of advanced RCC in combined chemotherapeutic regimens incorporating fluoropyridines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Garcia JA, Rini BI (2007) Recent progress in the management of advanced renal cell carcinoma. CA Cancer J Clin 57:112–125

    Article  PubMed  Google Scholar 

  2. Yagoda A, Abi-Rached B, Petrylak D (1995) Chemotherapy for advanced renal-cell carcinoma: 1983–1993. Semin Oncol 22:42–60

    PubMed  CAS  Google Scholar 

  3. Bamias A, Deliveliotis Ch, Fountzilas G et al (2004) Adjuvant chemotherapy with paclitaxel and carboplatin in patients with advanced carcinoma of the upper urinary tract: a study by the Hellenic Cooperative Oncology Group. J Clin Oncol 22:2150–2154

    Article  PubMed  CAS  Google Scholar 

  4. Fizazi K, Rolland F, Chevreau C et al (2003) A phase II study of irinotecan in patients with advanced renal cell carcinoma. Cancer 98:61–65

    Article  PubMed  CAS  Google Scholar 

  5. Vis AN, van der Gaast A, van Rhijn BW et al (2002) A phase II trial of methotrexate-human serum albumin (MTX-HSA) in patients with metastatic renal cell carcinoma who progressed under immunotherapy. Cancer Chemother Pharmacol 49:342–345

    Article  PubMed  CAS  Google Scholar 

  6. Zustovich F, Cartei G, Dal Bianco M et al (2006) A phase II study of gemcitabine and immunotherapy in renal cancer: preliminary results and review of the literature. Ann Oncol 17(Suppl 5):133–136

    Article  Google Scholar 

  7. Adjei AA (2002) Pemetrexed in the treatment of selected solid tumors. Semin Oncol 29:50–53

    PubMed  CAS  Google Scholar 

  8. Negrier S, Caty A, Lesimple T et al (2000) Treatment of patients with metastatic renal carcinoma with a combination of subcutaneous interleukin-2 and interferon alfa with or without fluorouracil. Groupe Francais d’Immunotherapie, Federation Nationale des Centres de Lutte Contre le Cancer. J Clin Oncol 18:4009–4015

    PubMed  CAS  Google Scholar 

  9. Allen MJ, Vaughan M, Webb A et al (2000) Protracted venous infusion 5-fluorouracil in combination with subcutaneous interleukin-2 and alpha-interferon in patients with metastatic renal cell cancer: a phase II study. Br J Cancer 83:980–985

    Article  PubMed  CAS  Google Scholar 

  10. Atzpodien J, Kirchner H, Rebmann U et al (2006) Interleukin-2/interferon-alpha2a/13-retinoic acid-based chemoimmunotherapy in advanced renal cell carcinoma: results of a prospectively randomised trial of the German Cooperative Renal Carcinoma Chemoimmunotherapy Group (DGCIN). Br J Cancer 95(4):463–469

    Article  PubMed  CAS  Google Scholar 

  11. George CM, Vogelzang NJ, Rini BI et al (2002) A phase II trial of weekly intravenous gemcitabine and cisplatin with continuous infusion fluorouracil in patients with metastatic renal cell carcinoma. Ann Oncol 13(1):116–120

    Article  PubMed  CAS  Google Scholar 

  12. Marsh S (2005) Thymidylate synthase pharmacogenetics. Invest New Drugs 23:533–537

    Article  PubMed  CAS  Google Scholar 

  13. Ackland SP, Clarke SJ, Beale P et al (2006) Thymidylate synthase inhibitors. Update Cancer Ther 1:403–427

    Article  Google Scholar 

  14. Mizutani Y, Wada H, Yoshida O et al (2003) Significance of thymidylate synthase activity in renal cell carcinoma. Clin Cancer Res 9:1453–1460

    PubMed  CAS  Google Scholar 

  15. Horie N, Aiba H, Oguro K et al (1995) Functional analysis and DNA polymorphism of the tandemly repeated sequences in the 5′-terminal regulatory region of the human gene for thymidylate synthase. Cell Struct Funct 20:191–197

    Article  PubMed  CAS  Google Scholar 

  16. Kawakami K, Ishida Y, Danenberg KD et al (2002) Functional polymorphism of the thymidylate synthase gene in colorectal cancer accompanied by frequent loss of heterozygosity. Jpn J Cancer Res 93:1221–1229

    PubMed  CAS  Google Scholar 

  17. Yoshioka K (2002) KyPlot: a user-oriented tool for statistical data analysis and visualization. Comput Stat 17(3):425–451

    Google Scholar 

  18. Aguilera A, Gómez-González B (2008) Genome instability: a mechanistic view of its causes and consequences. Nat Rev Genet 9(3):204–217

    Article  PubMed  CAS  Google Scholar 

  19. Debacker K, Winnepenninckx B, Ben-Porat N et al (2007) FRA18C: a new aphidicolin-inducible fragile site on chromosome 18q22, possibly associated with in vivo chromosome breakage. J Med Genet 44(5):347–352

    Article  PubMed  CAS  Google Scholar 

  20. Hirata H, Matsuyama H, Matsumoto H et al (2005) Deletion mapping of 18q in conventional renal cell carcinoma. Cancer Genet Cytogenet 163:101–105

    Article  PubMed  CAS  Google Scholar 

  21. Strefford JC, Stasevich I, Lane Tm et al (2005) A combination of molecular cytogenetic analyses reveals complex genetic alterations in conventional renal cell carcinoma. Cancer Genet Cytogenet 159(1):1–9

    Article  PubMed  CAS  Google Scholar 

  22. Gunawan B, Huber W, Holtrup M et al (2001) Prognostic impacts of cytogenetic findings in clear cell renal cell carcinoma: gain of 5q31-qter predicts a distinct clinical phenotype with favorable prognosis. Cancer Res 61(21):7731–7738

    PubMed  CAS  Google Scholar 

  23. Tran Y, Benbatoul K, Gorse K et al (1998) Novel regions of allelic deletion on chromosome 18p in tumors of the lung, brain and breast. Oncogene 17(26):3499–3505

    Article  PubMed  CAS  Google Scholar 

  24. Wang GG, Yao JC, Worah S et al (2005) Comparison of genetic alterations in neuroendocrine tumors: frequent loss of chromosome 18 in ileal carcinoid tumors. Mod Pathol 18(8):1079–1087

    Article  PubMed  CAS  Google Scholar 

  25. Uchida K, Hayashi K, Kawakami K et al (2004) Loss of heterozygosity at the thymidylate synthase (TYMS) locus on chromosome 18 affects tumor response and survival in individuals heterozygous for a 28-bp polymorphism in the TS gene. Clin Cancer Res 10:433–439

    Article  PubMed  CAS  Google Scholar 

  26. Brody JR, Hucl T, Gallmeier E et al (2006) Genomic copy number changes affecting the thymidylate synthase (TS) gene in cancer: a model for patient classification to aid fluoropyrimidine therapy. Cancer Res 66:9369–9373

    Article  PubMed  CAS  Google Scholar 

  27. Ooyama A, Okayama Y, Takechi T et al (2007) Genome-wide screening of loci associated with drug resistance to 5-fluorouracil-based drugs. Cancer Sci 98(4):577–583

    Article  PubMed  CAS  Google Scholar 

  28. Wang TL, Diaz LA Jr, Romans K et al (2004) Digital karyotyping identifies thymidylate synthase amplification as a mechanism of resistance to 5-fluorouracil in metastatic colorectal cancer patients. Proc Natl Acad Sci USA 101(9):3089–3094

    Article  PubMed  CAS  Google Scholar 

  29. Climent J, Martinez-Climent JA, Blesa D et al (2002) Genomic loss of 18p predicts an adverse clinical outcome in patients with high-risk breast cancer. Clin Cancer Res 8(12):3863–3869

    PubMed  CAS  Google Scholar 

  30. Rahman L, Voeller D, Rahman M et al (2004) Thymidylate synthase as an oncogene: a novel role for an essential DNA synthesis enzyme. Cancer Cell 5(4):341–351

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The present work is a part of the study program supported by AOI (Associazione Oncologica Italiana no profit, Padova), IAES (International Academy of Environmental Sciences no profit, Venezia), Antonio R. Cananzi no profit Association (Padova) and Italian research program Biotech I and Biotech II (regione Veneto).

Conflict of interest statement

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Colavito.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colavito, D., Cartei, G., Dal Bianco, M. et al. Thymidylate synthetase allelic imbalance in clear cell renal carcinoma. Cancer Chemother Pharmacol 64, 1195–1200 (2009). https://doi.org/10.1007/s00280-009-0986-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-009-0986-9

Keywords

Navigation