Skip to main content

Advertisement

Log in

Treatment parameters modulating regression of human melanoma xenografts by an antibody–drug conjugate (CR011-vcMMAE) targeting GPNMB

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the pharmacological properties of the CR011-vcMMAE fully human antibody–drug conjugate (ADC), such as dose titrations, quantitation of the time (days) to complete regression, pharmacokinetics, and schedule dependency. Our prior study characterized a fully human antibody to GPNMB covalently linked to monomethylauristatin E, CR011-vcMMAE, and further demonstrated cell surface staining of melanoma lines susceptible to the immunoconjugate’s cytotoxicity (Clin Cancer Res 2005; 12(4): 1373–1382).

Methods

The human SK-MEL-2 and SK-MEL-5 melanoma xenografts were used in athymic mice to assess anti-tumor efficacy. After s.c. implantation, tumors became established (60–100 mg), and treatment commenced by i.v. injection of the immunoconjugate or vinblastine or paclitaxel. Short-term anti-tumor effects (inhibition of tumor growth) and long-term effects (complete regression) were observed.

Results

CR011-vcMMAE induced regression of established human SK-MEL-2 and SK-MEL-5 xenografts at doses from 1.25 to 80 mg/kg treatment when administered intravenously every 4 days (4 treatments); strikingly, regressions were not associated with re-growth during the observation period (200 days). The disappearance rate of implants was dose dependent (minimum time, 18.5 days). Detectable serum CR011-vcMMAE ≥1 μg/mL (∼0.01 μM) was observed for >30 days post-dose; CR011-vcMMAE showed an elimination half-life of 10.3 days. A low volume of distribution suggested that CR011-vcMMAE was confined to blood and interstitial fluid. CR011-vcMMAE could be delivered by either a single bolus dose or by intermittent dosing (i.e., every 1, 2, 4, 8, or 16 days) with no discernible differences in the proportion of tumor-free survivors, indicating a lack of schedule dependency. The antibody–drug conjugate produced complete regressions, but the equivalent doses of free monomethylauristatin E or unconjugated antibody did not show anti-tumor effects. In addition, decreases in plasma tumor-derived human interleukin-8 coincided with tumor nodule disappearance.

Conclusions

Short-term anti-tumor effects and long-term effects (complete regression) were observed with CR011-vcMMAE, but not with the reference agents. These results suggest that CR011-vcMMAE may provide therapeutic benefit in malignant melanoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. US National Institutes of Health, Physicians Data Query, PDQ http://www.cancer.gov

Abbreviations

CR:

Complete regression

C.V.:

Coefficient of variation

GPNMB:

Glycoprotein NMB

MMAE:

Monomethylauristatin E

MTD:

Maximum tolerated dose

ROA:

Route of administration

References

  1. Afar DE, Bhaskar V, Ibsen E, et al (2004) Preclinical validation of anti-TMEFF2-auristatin E-conjugated antibodies in the treatment of prostate cancer. Mol Cancer Ther 3:921–932

    PubMed  CAS  Google Scholar 

  2. Aldrich TL, Viaje A, Morris AE (2003) EASE vectors for rapid stable expression of recombinant antibodies. Biotechnol Prog 19:1433–1438

    Article  PubMed  CAS  Google Scholar 

  3. Atkins MB, Elder DE, Essner R, et al (2006) Innovations and challenges in melanoma: summary statement from the first Cambridge conference. Clin Cancer Res 12:2291s–2296s

    Article  PubMed  Google Scholar 

  4. Bar-Eli M (1999) Role of interleukin-8 in tumor growth and metastasis of human melanoma. Pathobiology 67:12–18

    Article  PubMed  CAS  Google Scholar 

  5. Bennicelli JL, Guerry Dt (1993) Production of multiple cytokines by cultured human melanomas. Exp Dermatol 2:186–190

    Article  PubMed  CAS  Google Scholar 

  6. Bhaskar V, Law DA, Ibsen E, et al (2003) E-selectin up-regulation allows for targeted drug delivery in prostate cancer. Cancer Res 63:6387–6394

    PubMed  CAS  Google Scholar 

  7. Brennecke S, Deichmann M, Naeher H, Kurzen H (2005) Decline in angiogenic factors, such as interleukin-8, indicates response to chemotherapy of metastatic melanoma. Melanoma Res 15:515–522

    Article  PubMed  CAS  Google Scholar 

  8. Cruz-Monserrate Z, Mullaney JT, Harran PG, Pettit GR, Hamel E (2003) Dolastatin 15 binds in the vinca domain of tubulin as demonstrated by Hummel–Dreyer chromatography. Eur J Biochem 270:3822–3828

    Article  PubMed  CAS  Google Scholar 

  9. Doronina SO, Mendelsohn BA, Bovee TD, Cerveny CG, Alley SC, Meyer DL, Oflazoglu E, Toki BE, Sanderson RJ, Zabinski RF, Wahl AF, Senter PD (2006) Enhanced activity of monomethylauristatin F through monoclonal antibody delivery: effects of linker technology on efficacy and toxicity. Bioconjug Chem 17:114–124

    Article  PubMed  CAS  Google Scholar 

  10. Doronina SO, Toki BE, Torgov MY, et al (2003) Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat Biotechnol 21:778–784

    Article  PubMed  CAS  Google Scholar 

  11. Dykes DJ, Abbott BJ, Mayo JG, et al (1992) Development of human tumor xenograft models for in vivo evaluation of new antitumor drugs. In: Fiebig HH, Berger DP (eds) Immunodeficient mice in oncology. Contrib Oncol, vol 42. Karger, Basel, pp 1–22

  12. Fogh J, Fogh JM, Orfeo T (1977) One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice. J Natl Cancer Inst 59:221–226

    PubMed  CAS  Google Scholar 

  13. Francisco JA, Cerveny CG, Meyer DL, et al (2003) cAC10-vcMMAE, an anti-CD30-monomethyl auristatin E conjugate with potent and selective antitumor activity. Blood 102:1458–1465

    Article  PubMed  CAS  Google Scholar 

  14. Geran RI, Greenberg NH, Macdonald MM, Schumacher AM, Abbott BJ (1972) Protocols for screening chemical agents and natural products against animal tumors and other biological systems. Cancer Chemother Rep 3:1–104

    Google Scholar 

  15. Gitler MS, Sausville EA, Hollingshead M, Shoemaker R (2004) In vivo models for experimental therapeutics relevant to human cancer. Cancer Res 64:8478–8480

    Article  PubMed  CAS  Google Scholar 

  16. Hamblett KJ, Senter PD, Chace DF, et al (2004) Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res 10:7063–7070

    Article  PubMed  CAS  Google Scholar 

  17. Huang S, DeGuzman A, Bucana CD, Fidler IJ (2000) Nuclear factor-kappaB activity correlates with growth, angiogenesis, and metastasis of human melanoma cells in nude mice. Clin Cancer Res 6:2573–2581

    PubMed  CAS  Google Scholar 

  18. Jeffrey SC, Andreyka JB, Bernhardt SX, Kissler KM, Kline T, Lenox JS, Moser RF, Nguyen MT, Okeley NM, Stone IJ, Zhang X, Senter PD (2006) Development and properties of beta-glucuronide linkers for monoclonal antibody–drug conjugates. Bioconjug Chem 17:831–840

    Article  PubMed  CAS  Google Scholar 

  19. Johnson JI, Decker S, Zaharevitz D, et al (2001) Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br J Cancer 84:1424–1431

    Article  PubMed  CAS  Google Scholar 

  20. Jordan MA, Wilson L (2004) Microtubules as a target for anticancer drugs. Nat Rev Cancer 4:253–265

    Article  PubMed  CAS  Google Scholar 

  21. Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observations. J Am Statistical Assoc 53:457–481

    Article  Google Scholar 

  22. Kobayashi M, Natsume T, Tamaoki S, Watanabe J, Asano H, Mikami T, Miyasaka K, Miyazaki K, Gondo M, Sakakibara K, Tsukagoshi S (1997) Antitumor activity of TZT-1027, a novel dolastatin 10 derivative. Jpn J Cancer Res 88:316–327

    PubMed  CAS  Google Scholar 

  23. Koch AE, Polverini PJ, Kunkel SL, et al (1992) Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 258:1798–1801

    Article  PubMed  CAS  Google Scholar 

  24. Lazar-Molnar E, Hegyesi H, Toth S, Falus A (2000) Autocrine and paracrine regulation by cytokines and growth factors in melanoma. Cytokine 12:547–554

    Article  PubMed  CAS  Google Scholar 

  25. Le Borgne R, Planque N, Martin P, Dewitte F, Saule S, Hoflack B (2001) The AP-3-dependent targeting of the melanosomal glycoprotein QNR-71 requires a di-leucine-based sorting signal. J Cell Sci 114:2831–2841

    PubMed  CAS  Google Scholar 

  26. Lobo ED, Hansen RJ, Balthasar JP (2004) Antibody pharmacokinetics and pharmacodynamics. J Pharm Sci 93:2645–2668

    Article  PubMed  CAS  Google Scholar 

  27. Lu C, Kerbel RS (1994) Cytokines, growth factors and the loss of negative growth controls in the progression of human cutaneous malignant melanoma. Curr Opin Oncol 6:212–220

    PubMed  CAS  Google Scholar 

  28. Mahmood I, Green MD (2005) Pharmacokinetic and pharmacodynamic considerations in the development of therapeutic proteins. Clin Pharmacokinet 44:331–347

    Article  PubMed  CAS  Google Scholar 

  29. Mao W, Luis E, Ross S, et al (2004) EphB2 as a therapeutic antibody drug target for the treatment of colorectal cancer. Cancer Res 64:781–788

    Article  PubMed  CAS  Google Scholar 

  30. Mattei S, Colombo MP, Melani C, Silvani A, Parmiani G, Herlyn M (1994) Expression of cytokine/growth factors and their receptors in human melanoma and melanocytes. Int J Cancer 56:853–857

    Article  PubMed  CAS  Google Scholar 

  31. McDonagh CF, Turcott E, Westendorf L, et al (2006) Engineered antibody–drug conjugates with defined sites and stoichiometries of drug attachment. Protein Eng Des Sel 19(7):299–307

    Article  PubMed  CAS  Google Scholar 

  32. Miyazaki K, Kobayashi M, Natsume T, Gondo M, Mikami T, Sakakibara K, Tsukagoshi S (1995) Synthesis and antitumor activity of novel dolastatin 10 analogs. Chem Pharm Bull (Tokyo) 43:1706–1718

    CAS  Google Scholar 

  33. Mohammad RM, Varterasian ML, Almatchy VP, Hannoudi GN, Pettit GR, Al-Katib A (1998) Successful treatment of human chronic lymphocytic leukemia xenografts with combination biological agents auristatin PE and bryostatin 1. Clin Cancer Res 4:1337–1343

    PubMed  CAS  Google Scholar 

  34. Natsume T, Watanabe J, Tamaoki S, Fujio N, Miyasaka K, Kobayashi M (2000) Characterization of the interaction of TZT-1027, a potent antitumor agent, with tubulin. Jpn J Cancer Res 91:737–747

    PubMed  CAS  Google Scholar 

  35. Owen TA, Smock SL, Prakash S, et al (2003) Identification and characterization of the genes encoding human and mouse osteoactivin. Crit Rev Eukaryot Gene Expr 13:205–220

    Article  PubMed  CAS  Google Scholar 

  36. Pettit GR, Srirangam JK, Barkoczy J, et al (1995) Antineoplastic agents 337. Synthesis of dolastatin 10 structural modifications. Anticancer Drug Des 10:529–544

    PubMed  CAS  Google Scholar 

  37. Plowman J, Dykes DJ, Hollingshead M, Simpson-Herren L, Alley MC (1997) Human tumor xenograft models in NCI drug development Anticancer drug development guide: preclinical screening, clinical trials, and approval. In: Teicher B (ed) Humana Press, Totowa, pp 102–125

  38. Pollack VA, Savage DM, Baker DA, et al (1999) Inhibition of epidermal growth factor receptor-associated tyrosine phosphorylation in human carcinomas with CP-358,774: dynamics of receptor inhibition in situ and antitumor effects in athymic mice. J Pharmacol Exp Ther 291:739–748

    PubMed  CAS  Google Scholar 

  39. Rodeck U (1993) Growth factor independence and growth regulatory pathways in human melanoma development. Cancer Metastasis Rev 12:219–226

    Article  PubMed  CAS  Google Scholar 

  40. Schadendorf D, Moller A, Algermissen B, Worm M, Sticherling M, Czarnetzki BM (1993) IL-8 produced by human malignant melanoma cells in vitro is an essential autocrine growth factor. J Immunol 151:2667–2675

    PubMed  CAS  Google Scholar 

  41. Shikano S, Bonkobara M, Zukas PK, Ariizumi K (2001) Molecular cloning of a dendritic cell-associated transmembrane protein, DC-HIL, that promotes RGD-dependent adhesion of endothelial cells through recognition of heparan sulfate proteoglycans. J Biol Chem 276:8125–8134

    Article  PubMed  CAS  Google Scholar 

  42. Shimkets RA, Lowe DG, Tai JT, et al (1999) Gene expression analysis by transcript profiling coupled to a gene database query. Nat Biotechnol 17:798–803

    Article  PubMed  CAS  Google Scholar 

  43. Strieter RM, Kunkel SL, Elner VM, et al (1992) Interleukin-8. A corneal factor that induces neovascularization. Am J Pathol 141:1279–1284

    PubMed  CAS  Google Scholar 

  44. Sun MM, Beam KS, Cerveny CG, Hamblett KJ, Blackmore RS, Torgov MY, Handley FG, Ihle NC, Senter PD, Alley SC (2005) Reduction–alkylation strategies for the modification of specific monoclonal antibody disulfides. Bioconjug Chem 16:1282–1290

    Article  PubMed  CAS  Google Scholar 

  45. Tse KF, Jeffers M, Pollack VA, et al (2006) CR011, a fully human monoclonal antibody-auristatin E conjugate, for the treatment of melanoma. Clin Cancer Res 12:1373–1382

    Article  PubMed  CAS  Google Scholar 

  46. Weterman MA, Ajubi N, van Dinter IM, et al (1995) nmb, a novel gene, is expressed in low-metastatic human melanoma cell lines and xenografts. Int J Cancer 60:73–81

    Article  PubMed  CAS  Google Scholar 

  47. Wu AM, Senter PD (2005) Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol 23:1137–1146

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Michael Gallo and Gadi Gazit-Bornstein (Abgenix Biopharma, Fremont, CA), and Damon Meyer (Seattle Genetics, Inc., Bothell, WA) who contributed significantly to design of the ADC. For expertise in animal experimentation, we are grateful to Donald Dykes and Murray Stackhouse of Southern Research Institute (Birmingham, AL), as well as Michael Wick, Jennifer Marty and Marla Lear of the Institute for Drug Development (San Antonio, TX). We are also indebted to Bruce Mico for pharmacokinetic analysis, Steven Henck for helpful discussions and to Traci Mansfield for program management.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent A. Pollack.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pollack, V.A., Alvarez, E., Tse, K.F. et al. Treatment parameters modulating regression of human melanoma xenografts by an antibody–drug conjugate (CR011-vcMMAE) targeting GPNMB. Cancer Chemother Pharmacol 60, 423–435 (2007). https://doi.org/10.1007/s00280-007-0490-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-007-0490-z

Keywords

Navigation