Skip to main content

Advertisement

Log in

Enhancing effect of connexin 32 gene on vinorelbine-induced cytotoxicity in A549 lung adenocarcinoma cells

  • Short Communication
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Connexin (Cx) genes exert negative growth effects on tumor cells with certain cell specificity, and tumor-suppressive effects of the Cx genes contribute to enhancement of chemotherapeutical agents-induced cytotoxicity in some cancer cells. Since we and others have been reported that Cx32 acts as a tumor suppressor gene in lung adenocarcinomas, this study was undertaken to estimate if the combination of Cx32-dependent tumor-suppressive effect and vinorelbine (VBN), a chemotherapeutic agent which has been utilized for clinical lung adenocarcinoma treatment, could be effective in enhancing the sensitivity of the lung cancer to VBN treatment.

Methods

We established the A549 cells (a human lung adenocarcinoma cell line) which had stable expression of Cx32 and estimated effect of Cx32 on VBN-induced cytotoxicity in the established cells.

Results

Cx32 expression in A549 cells significantly potentiated VBN-induced cytotoxicity on the cells due to enhancement of apoptosis induction. The enhancing cytotoxicity in A549 cells by Cx32 mainly depended on a decrease in expression of multi-drug resistance-1 (MDR-1) gene responsible for reduction of VBN accumulation into the cells. We also observed that silencing of Cx32 by siRNA treatment elevated the expression level of MDR-1 mRNA in A549 cells and that inhibition of MDR-1 gene product-dependent function enhanced VBN-induced cytotoxicity in the cells.

Conclusion

These results suggest that Cx32 contributes to the enhancement of VBN-induced cytotoxicity in A549 cells via the reduction of MDR-1 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Adams DJ, Knick VC (1995) P-glycoprotein mediated resistance to 5′-nor-anhydro-vinblastine (Navelbine). Invest New Drugs 13:13–21

    Article  PubMed  CAS  Google Scholar 

  2. Ambudkar SV, Dey S, Hrycyna CA, Ramachandra M, Pastan I, Gottesman MM (1999) Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu Rev Pharmacol Toxicol 39:361–398

    Article  PubMed  CAS  Google Scholar 

  3. Awasthi S, Singhal SS, Singhal J, Cheng J, Zimniak P, Awasthi YC (2003) Role of RLIP76 in lung cancer doxorubicin resistance II. Doxorubicin transport in lung cancer by RLIP76. Int J Oncol 22:713–720

    PubMed  CAS  Google Scholar 

  4. Baylin SB, Herman JG, Garff JR, Vertino PM, Issa JP (1998) Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res 72:141–196

    Article  PubMed  CAS  Google Scholar 

  5. Bos JL (1989) ras oncogenes in human cancer: a review. Cancer Res 49:4682–4689

    PubMed  CAS  Google Scholar 

  6. Cartwright CA, Meisler AI, Eckhart W (1990) Activation of the pp60c-src protein kinase is an early event in colonic carcinogenesis. Proc Natl Acad Sci USA 87:558–562

    Article  PubMed  CAS  Google Scholar 

  7. Chipman JK, Mally A, Edwards GO (2003) Disruption of gap junctions in toxicology and carcinogenesis. Toxicol Sci 71:146–153

    Article  PubMed  CAS  Google Scholar 

  8. Cole SPC, Bhardwaj G, Gerlach JH, Mackie JE, Grant CE, Almquist KC, Stewart AJ, Kurz EU, Duncan AM, Deeley RG (1992) Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 258:1650–1654

    Article  PubMed  CAS  Google Scholar 

  9. Comerford KM, Cummins EP, Taylor CT (2004) c-Jun NH2-terminal kinase activation contributes to hypoxia-inducible factor 1α-dependent P-glycoprotein expression in hypoxia. Cancer Res 64:9057–9061

    Article  PubMed  CAS  Google Scholar 

  10. Cros S, Wright M, Morimoto M, Lataste H, Couzinier JP, Krikorian A (1989) Experimental antitumor activity of Navelbine. Semin Oncol 16:15–20

    PubMed  CAS  Google Scholar 

  11. Curran M, Plosker G (2002) Vinorelbine a review of its use in elderly patients with advanced non-small cell lung cancer. Drugs Aging 19:695–721

    Article  PubMed  CAS  Google Scholar 

  12. Duflot-Dancer A, Mesnil M, Yamasaki H (1997) Dominant-negative abrogation of connexin-mediated cell growth control by mutant connexin genes. Oncogene 15:2151–2158

    Article  PubMed  CAS  Google Scholar 

  13. Dumontet C, Branimir S (1999) Mechanisms of action of and resistance to antitubulin agents: microtubule dynamics, drug transport, and cell death. J Clin Oncol 17:1061–1070

    PubMed  CAS  Google Scholar 

  14. Einhorn L (1997) Non-small cell lung cancer: improved chemotherapy. Lung Cancer 18:111

    Article  Google Scholar 

  15. Evan WH, Martin PE (2002) Gap junctions: structure and function. Mol Membr Biol 19:121–136

    Article  CAS  Google Scholar 

  16. Fujimoto E, Sato H, Shirai S, Nagashima Y, Fukumoto K, Hagiwara H, Negishi E, Ueno K, Omori Y, Yamasaki H, Hagiwara K, Yano T (2005) Connexin 32 as a tumor suppressor gene in a metastatic renal cell carcinoma cell line. Oncogene 24:3684–3690

    Article  PubMed  CAS  Google Scholar 

  17. Gary MJ, Zhang J, Ellis LM, Semenza GL, Evans DB, Watowich SS, Gallick GE (2005) HIF-1α, STAT3, CBP/p300 and Ref-1/APE are components of a transcriptional complex that regulates Src-dependent hypoxia-induced expression of VEGF in pancreatic and prostate carcinomas. Oncogene 24:3110–3120

    Article  CAS  Google Scholar 

  18. Gottesman MM, Fojo T, Bates SE (2002) Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2:48–58

    Article  PubMed  CAS  Google Scholar 

  19. Hada S, Sato H, Fukumoto K, Virgona N, Hagiwara H, Saito T, Suzuki K, Asano R, Yamasaki H (2007) Reduction of malignant phenotype of lung adenocarcinoma cell by connexin 32: possible involvement of Src. Oncol Rep (in press)

  20. Irby RB, Yeatman TJ (2000) Role of Src expression and activation in human cancer. Oncogene 19:5636–5642

    Article  PubMed  CAS  Google Scholar 

  21. Karni R, Jove R, Levitzki A (1999) Inhibition of pp60c-Src reduces Bcl-xL expression and reverses the transformed phenotype of cells overexpressing EGF and Her-2 receptors. Oncogene 18:4654–4662

    Article  PubMed  CAS  Google Scholar 

  22. Krutovskikh VA, Piccoli C, Yamasaki H (2002) Gap junction intercellular communication propagates cell death in cancerous cells. Oncogene 21:1989–1999

    Article  PubMed  CAS  Google Scholar 

  23. Lampe P, Lau A (2000) Regulation of gap junctions by phosphorylation of connexins. Arch Biochem Biophys 3842:205–215

    Article  CAS  Google Scholar 

  24. Landis SH, Murry T, Bolden S, Wingo P (1998) Cancer statistics, 1998. CA Cancer J Clin 48:6–29

    PubMed  CAS  Google Scholar 

  25. Lin JH, Weigel H, Cotrina ML, Liu S, Bueno E, Hansen AJ, Hansen TW, Goldman S, Nedergard M (1998) Gap-junction-mediated propagation and amplification of cell injury. Nat Neurosci 1:494–500

    Article  PubMed  CAS  Google Scholar 

  26. Liscovitch M, Lavie Y (2002) Cancer multidrug resistance: a review of recent discovery research. IDrugs 5:349–355

    PubMed  CAS  Google Scholar 

  27. Masaki T, Igarashi K, Tokuda M, Yukimasa S, Han F, Jin YJ, Li JQ, Yoneyama H, Uchida N, Fujita J, Yoshiji H, Watanabe S, Kurokohchi K, Kuriyama S (2003) pp60c-src activation in lung adenocarcinoma. Eur J Cancer 39:1447–1455

    Article  PubMed  CAS  Google Scholar 

  28. Mesnil M (2002) Connexins and cancer. Biol Cell 94:493–500

    Article  PubMed  CAS  Google Scholar 

  29. Mesnil M, Yamasaki H (1993) Cell-cell communication and growth control of normal and cancers: evidence and hypothesis. Mol Carcinog 7:14–17

    Article  PubMed  CAS  Google Scholar 

  30. Mesnil M, Yamasaki H (2000) Bystander effect in herpes simplex virus-thymidine kinase/ganciclovir cancer gene therapy: role of gap-junctional intercellular communication. Cancer Res 60:3989–3999

    PubMed  CAS  Google Scholar 

  31. Ngan VK, Bellman K, Panda D, Hill BT, Jordan MA, Wilson L (2000) Novel actions of the antitumor drugs vinflunine and vinorelbine on microtubules. Cancer Res 60:5045–5051

    PubMed  CAS  Google Scholar 

  32. Nishio K, Nakamura T, Koh Y, Suzuki Y, Fukumoto H, Saijo N (1999) Drug resistance in lung cancer. Curr Opin Oncol 11:109–115

    Article  PubMed  CAS  Google Scholar 

  33. Omori Y, Krutovskikh V, Mironov N, Tsuda H, Yamasaki H (1996) Cx32 gene mutation in a chemically induced rat liver tumour. Carcinogenesis 17:2077–2080

    Article  PubMed  CAS  Google Scholar 

  34. Potier P (1989) The synthesis of Navelbine prototype of a new series of vinblastine derivatives. Semin Oncol 16:2–4

    PubMed  CAS  Google Scholar 

  35. Sato H, Senba H, Virgona N, Fukumoto K, Ishida T, Hagiwara H, Negishi E, Ueno K, Yamasaki H, Yano T (2007) Connexin 32 potentiates vinblastine-induced cytotoxicity in renal cell carcinoma cells. Mol Carcinog (in press)

  36. Shirai S, Hagiwara H, Sato H, Fukumoto K, Kobayashi S, Seki T, Ariga T, Yamasaki H, Hagiwara K, Yano T (2005) Prevention of renal cell carcinoma from hemodialysis patients by regulating epigenetic factors. Kidney Int 67:2506–2507

    Google Scholar 

  37. Singhal SS, Singhal J, Sharma R, Singh SV, Zimniak P, Awasthi YC, Awasthi S (2003) Role of RLIP76 in lung cancer doxorubicin resistance. I. The ATPase activity of RLIP76 correlates with doxorubicin and 4-hydroxynonenal resistance in lung cancer cells. Int J Oncol 22:365–375

    PubMed  CAS  Google Scholar 

  38. Stavrovskaya AA (2000) Cellular mechanisms of multidrug resistance of tumor cells. Biochemistry (Mosc) 65:95–106

    CAS  Google Scholar 

  39. Swenson K, Piwnica-Worms H, McNamee H, Paul D (1990) Tyrosine phosphorylation of the gap junction protein connexin43 is required for the pp60v-src-induced inhibition of communication. Cell Regul 1:989–1002

    PubMed  CAS  Google Scholar 

  40. Toso C, Lindley C (1995) Vinorelbine: a novel Vinca alkaloid. Am J Health Syst Pharm 52:1287–1304

    PubMed  CAS  Google Scholar 

  41. Trosko JE, Ruch RJ (1998) Cell-cell communication in carcinogenesis. Front Biosci 3:208–236

    Google Scholar 

  42. Trosko JE, Ruch RJ (2002) Gap junctions as targets for cancer chemoprevention and chemotherapy. Curr Drug Target 3:465–482

    Article  CAS  Google Scholar 

  43. Ueda K, Cardarelli C, Gottesman MM, Pastan I (1987) Expression of a full-length cDNA for the human “MDR1” gene confers resistance to colchicines, doxorubicin, and vinblastine. Proc Natl Acad Sci USA 84:3004–3008

    Article  PubMed  CAS  Google Scholar 

  44. Wilson MR, Close TW, Trosko JE (2000) Cell population dynamics (apoptosis, mitosis, and cell-cell communication) during disruption of homeostasis. Exp Cell Res 254:257–268

    Article  PubMed  CAS  Google Scholar 

  45. Yano T, Ito F, Kobayashi K, Yonezawa Y, Suzuki K, Asano R, Hagiwara K, Nakazawa H, Toma H, Yamasaki H (2004) Hypermethylation of the CpG island of connexin 32, a candiate tumor suppressor gene in renal cell carcinomas from hemodialysis patients. Cancer Lett 208:137–142

    Article  PubMed  CAS  Google Scholar 

  46. Yano T, Yamasaki H (2001) Regulation of cellular invasion and matrix metalloproteinase activity in HepG2 cell by connexin 26 transfection. Mol Carcinog 31:101–109

    Article  PubMed  CAS  Google Scholar 

  47. Yano T, Zissel G, Muller-Qernheim J, Shin SJ, Satoh H, Ichikawa T (2002) Prostaglandin E2 reinforces the activation of Ras signal pathway in lung adenocarcinoma cells via EP3. FEBS Lett 518:154–158

    Article  PubMed  CAS  Google Scholar 

  48. Yoshimura K, Yamashita N, Ishikawa H (1980) Clinical statistics for lung neoplasms in Japan according to their histological types. Nippon-Rinsho 38:2581–2591

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by a research grant for Health Sciences Focusing on Drug Innovation from the Japan Health Sciences Foundation (KH21012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiro Yano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, H., Fukumoto, K., Hada, S. et al. Enhancing effect of connexin 32 gene on vinorelbine-induced cytotoxicity in A549 lung adenocarcinoma cells. Cancer Chemother Pharmacol 60, 449–457 (2007). https://doi.org/10.1007/s00280-006-0406-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-006-0406-3

Keywords

Navigation