Skip to main content

Advertisement

Log in

Capecitabine improves cancer cachexia and normalizes IL-6 and PTHrP levels in mouse cancer cachexia models

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

To clarify the potential of parathyroid hormone-related protein (PTHrP) and interleukin-6 (IL-6) as cachectic factors in a colon 26 model and the effects of capecitabine on cancer cachexia as determined by plasma levels of IL-6 and PTHrP and body weight loss.

Methods

From two colon 26 sublines-cancer cachectic clone20 and non-cachectic clone5 plasma levels of PTHrP protein and mRNA expression levels in tumor tissues were compared. An IL-6 neutralizing antibody, a PTHrP neutralizing antibody, and capecitabine were administered into mice bearing clone20 and their anticachectic effects evaluated.

Results

The plasma level of PTHrP protein in mice bearing clone20 was higher than that in mice bearing clone5. The expression level of PTHrP mRNA was 49-fold higher in tumor tissues of clone20 than of clone5, according to GeneChip® analysis. PTHrP antibody as well as IL-6 antibody suppressed wasting of the body and gastrocnemius and adipose tissue weights. PTHrP antibody suppressed the induction of hypercalcemia but not hypoglycemia or elevation of IL-6, whereas IL-6 antibody suppressed the induction of hypoglycemia but not hypercalcemia or elevation of PTHrP. Capecitabine, a fluorinated pyrimidine anticancer agent, improved body wasting of mice bearing clone20 at a low dose with no reduction of tumor volume. Furthermore, capecitabine lowered the levels of PTHrP and IL-6 in plasma and suppressed hypoglycemia and hypercalcemia in this model. Capecitabine also showed anticachectic effects on cachexia in a cancer model induced by human cervical cancer cell line Y (also known as Yumoto).

Conclusions

PTHrP and IL-6 were found to be factors in the development of cachexia in a colon 26 cancer model, and capecitabine improved cancer cachexia by suppressing the plasma levels of IL-6 and PTHrP in colon 26 and Y cachectic models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Blum JL, Jones SE, Buzdar AU, LoRusso PM, Kuter I, Vogel C, Osterwalder B, Burger HU, Brown CS, Griffin T (1999) Multicenter phase II study of capecitabine in paclitaxel-refractory metastatic breast cancer. J Clin Oncol 7:485–493

    Google Scholar 

  2. Davis TW, Zweifel BS, O’Neal JM, Heuvelman DM, Abegg AL, Hendrich TO, Masferrer JL (2004) Inhibition of cyclooxygenase-2 by celecoxib reverses tumor-induced wasting. J Pharmacol Exp Ther 308:929–934

    Article  PubMed  CAS  Google Scholar 

  3. DeWys WD, Begg C, Lavin PT, Band PR, Bennett JM, Bertino JR, Cohen MH, Douglass HO Jr, Engstrom PF, Ezdinli EZ, Horton J, Johnson GJ et al (1980) Prognostic effect of weight loss prior to chemotherapy in cancer patients. Eastern Cooperative Oncology Group. Am J Med 69:491–497

    Article  PubMed  CAS  Google Scholar 

  4. DeWys WD, Begg C, Band P, Tormey D (1981) The impact of malnutrition on treatment results in breast cancer. Cancer Treat Rep 65(Suppl 5):87–91

    PubMed  Google Scholar 

  5. Eda H, Tanaka Y, Ishitsuka H (1991) 5′-Deoxy-5-fluorouridine improves cachexia by a mechanism independent of its antiproliferative action in colon 26 adenocarcinoma-bearing mice. Cancer Chemother Pharmacol 29:1–6

    Article  PubMed  CAS  Google Scholar 

  6. Eda H, Fujimoto K, Watanabe S, Ishikawa T, Ohiwa T, Tatsuno K, Tanaka Y, Ishitsuka H (1993) Cytokines induce uridine phosphorylase in mouse colon 26 carcinoma cells and make the cells more susceptible to 5′-deoxy-5-fluorouridine. Jpn J Cancer Res 84:341–347

    PubMed  CAS  Google Scholar 

  7. Enomoto A, Rho MC, Fukami A, Hiraku O, Komiyama K, Hayashi M (2004) Suppression of cancer cachexia by 20S,21-epoxy-resibufogenin-3-acetate-a novel nonpeptide IL-6 receptor antagonist. Biochem Biophys Res Commun 323:1096–1102

    Article  PubMed  CAS  Google Scholar 

  8. Fujimoto-Ouchi K, Tamura S, Mori K, Tanaka Y, Ishitsuka H (1995) Establishment and characterization of cachexia-inducing and -non-inducing clones of murine colon 26 carcinoma. Int J Cancer 61:522–528

    Article  PubMed  CAS  Google Scholar 

  9. Fujita J, Tsujinaka T, Yano M, Ebisui C, Saito H, Katsume A, Akamatsu K, Ohsugi Y, Shiozaki H, Monden M (1996) Anti-interleukin-6 receptor antibody prevents muscle atrophy in colon-26 adenocarcinoma-bearing mice with modulation of lysosomal and ATP-ubiquitin-dependent proteolytic pathways. Int J Cancer 68:637–643

    Article  PubMed  CAS  Google Scholar 

  10. Gallwitz WE, Guise TA, Mundy GR (2002) Guanosine nucleotides inhibit different syndromes of PTHrP excess caused by human cancers in vivo. J Clin Invest 110:1559–1572

    Article  PubMed  CAS  Google Scholar 

  11. Gelin J, Moldawer LL, Lonnroth C, Sherry B, Chizzonite R, Lundholm K (1991) Role of endogenous tumor necrosis factor alpha and interleukin 1 for experimental tumor growth and the development of cancer cachexia. Cancer Res. 51:415–421

    PubMed  CAS  Google Scholar 

  12. Hiraga T, Hata K, Ikeda F, Kitagaki J, Fujimoto-Ouchi K, Tanaka Y, Yoneda T (2005) Preferential inhibition of bone metastases by 5′-deoxy-5-fluorouridine and capecitabine in the 4T1/luc mouse breast cancer model. Oncol Rep 14(3):695–699

    PubMed  CAS  Google Scholar 

  13. Hussey HJ, Todorov PT, Field WN, Inagaki N, Tanaka Y, Ishitsuka H, Tisdale MJ (2000) Effect of a fluorinated pyrimidine on cachexia and tumour growth in murine cachexia models: relationship with a proteolysis inducing factor. Br J Cancer 83:56–62

    Article  PubMed  CAS  Google Scholar 

  14. Iguchi H, Onuma E, Sato K, Sato K, Ogata E (2001) Involvement of parathyroid hormone-related protein in experimental cachexia induced by a human lung cancer-derived cell line established from a bone metastasis specimen. Int J Cancer 94(1):24–27

    Article  PubMed  CAS  Google Scholar 

  15. Matsumoto T, Fujimoto-Ouchi K, Tamura S, Tanaka Y, Ishitsuka H (1999) Tumour inoculation site-dependent induction of cachexia in mice bearing colon 26 carcinoma. Br J Cancer 79:764–769

    Article  PubMed  CAS  Google Scholar 

  16. Matthys P, Heremans H, Opdenakker G, Billiau A (1991) Anti-interferon-gamma antibody treatment, growth of Lewis lung tumours in mice and tumour-associated cachexia. Eur J Cancer 27:182–187

    Article  PubMed  CAS  Google Scholar 

  17. Matthys P, Dijkmans R, Proost P, Van Damme J, Heremans H, Sobis H, Billiau A (1991) Severe cachexia in mice inoculated with interferon-gamma-producing tumor cells. Int J Cancer 49:77–82

    Article  PubMed  CAS  Google Scholar 

  18. Moldawer LL, Georgieff M, Lundholm K (1987) Interleukin 1, tumour necrosis factor-alpha (cachectin) and the pathogenesis of cancer cachexia. Clin Physiol 7:263–274

    PubMed  CAS  Google Scholar 

  19. Mori K, Fujimoto-Ouchi K, Ishikawa T, Sekiguchi F, Ishitsuka H, Tanaka Y (1996) Murine interleukin-12 prevents the development of cancer cachexia in a murine model. Int J Cancer 67:849–855

    Article  PubMed  CAS  Google Scholar 

  20. Mori M, Yamaguchi K, Honda S, Nagasaki K, Ueda M, Abe O, Abe K (1991) Cancer cachexia syndrome developed in nude mice bearing melanoma cells producing leukemia-inhibitory factor. Cancer Res 51:6656–6659

    PubMed  CAS  Google Scholar 

  21. Norton JA, Peacock JL, Morrison SD (1987) Cancer cachexia. Crit Rev Oncol Hematol 7:289–327

    PubMed  CAS  Google Scholar 

  22. Ohe Y, Podack ER, Olsen KJ, Miyahara Y, Miura K, Saito H, Koishihara Y, Ohsugi Y, Ohira T, Nishio K et al (1993) Interleukin-6 cDNA transfected Lewis lung carcinoma cells show unaltered net tumour growth rate but cause weight loss and shortened survival in syngeneic mice. Br J Cancer 67:939–944

    PubMed  CAS  Google Scholar 

  23. Oliff A, Defeo-Jones D, Boyer M, Martinez D, Kiefer D, Vuocolo G, Wolfe A, Socher SH (1987) Tumors secreting human TNF/cachectin induce cachexia in mice. Cell 50:555–563

    Article  PubMed  CAS  Google Scholar 

  24. Onuma E, Sato K, Saito H, Tsunenari T, Ishii K, Esaki K, Yabuta N, Wakahara Y, Yamada-Okabe H, Ogata E (2004) Generation of a humanized monoclonal antibody against human parathyroid hormone-related protein and its efficacy against humoral hypercalcemia of malignancy. Anticancer Res 24:2665–2673

    PubMed  CAS  Google Scholar 

  25. Onuma E, Tsunenari T, Saito H, Sato K, Yamada-Okabe H, Ogata E (2005) Parathyroid hormone-related protein (PTHrP) as a causative factor of cancer-associated wasting: possible involvement of PTHrP in the repression of locomotor activity in rats bearing human tumor xenografts. Int J Cancer 116:471–478

    Article  PubMed  CAS  Google Scholar 

  26. Stovroff MC, Fraker DL, Swedenborg JA, Norton JA (1988) Cachectin/tumor necrosis factor: a possible mediator of cancer anorexia in the rat. Cancer Res 48:4567–7452

    PubMed  CAS  Google Scholar 

  27. Strassmann G, Fong M, Kenney JS, Jacob CO (1992) Evidence for the involvement of interleukin 6 in experimental cancer cachexia. J Clin Invest 89:1681–1684

    PubMed  CAS  Google Scholar 

  28. Strassmann G, Fong M, Freter CE, Windsor S, D’Alessandro F, Nordan RP (1993) Suramin interferes with interleukin-6 receptor binding in vitro and inhibits colon-26-mediated experimental cancer cachexia in vivo. J Clin Invest 92:2152–2159

    PubMed  CAS  Google Scholar 

  29. Suva LJ, Winslow GA, Wettenhall RE, Hammonds RG, Moseley JM, Diefenbach-Jagger H, Rodda CP, Kemp BE, Rodriguez H, Chen EY et al (1987) A parathyroid hormone-related protein implicated in malignant hypercalcemia: cloning and expression. Science 37:893–896

    Article  Google Scholar 

  30. Tamura S, Ouchi KF, Mori K, Endo M, Matsumoto T, Eda H, Tanaka Y, Ishitsuka H, Tokita H, Yamaguchi K (1995) Involvement of human interleukin 6 in experimental cachexia induced by a human uterine cervical carcinoma xenograft. Clin Cancer Res 1:1353–1358

    PubMed  CAS  Google Scholar 

  31. Tanaka R, Okada M, Kajimura N, Otsubo K, Gyotoku M, Nagasaki K, Ekimoto H, Yamaguchi K (1996) Triple paraneoplastic syndrome of hypercalcemia, leukocytosis and cachexia in two human tumor xenografts in nude mice. Jpn J Clin Oncol 26:88–94

    PubMed  CAS  Google Scholar 

  32. Tanaka Y, Tanaka T, Ishitsuka H (1989) Antitumor activity of indomethacin in mice bearing advanced colon 26 carcinoma compared with those with early transplants. Cancer Res 49:5935–5939

    PubMed  CAS  Google Scholar 

  33. Tanaka Y, Eda H, Tanaka T, Udagawa T, Ishikawa T, Horii I, Ishitsuka H, Kataoka T, Taguchi T (1990) Experimental cancer cachexia induced by transplantable colon 26 adenocarcinoma in mice. Cancer Res 50:2290–2295

    PubMed  CAS  Google Scholar 

  34. Tanaka Y, Eda H, Fujimoto K, Tanaka T, Ishikawa T, Ishitsuka H (1990) Anticachectic activity of 5′-deoxy-5-fluorouridine in a murine tumor cachexia model, colon 26 adenocarcinoma. Cancer Res 50:4528–4532

    PubMed  CAS  Google Scholar 

  35. Tokita H, Tanaka N, Sekimoto K, Ueno T, Okamoto K, Fujimura S (1980) Experimental model for combination chemotherapy with metronidazole using human uterine cervical carcinomas transplanted into nude mice. Cancer Res 40:4287–4294

    PubMed  CAS  Google Scholar 

  36. Tracey KJ, Wei H, Manogue KR, Fong Y, Hesse DG, Nguyen HT, Kuo GC, Beutler B, Cotran RS, Cerami A et al (1988) Cachectin/tumor necrosis factor induces cachexia, anemia, and inflammation. J Exp Med 67:1211–1227

    Article  Google Scholar 

  37. Tsujinaka T, Fujita J, Ebisui C, Yano M, Kominami E, Suzuki K, Tanaka K, Katsume A, Ohsugi Y, Shiozaki H, Monden M (1996) Interleukin 6 receptor antibody inhibits muscle atrophy and modulates proteolytic systems in interleukin 6 transgenic mice. J Clin Invest 97:244–249

    Article  PubMed  CAS  Google Scholar 

  38. Van Cutsem E, Hoff PM, Harper P, Bukowski RM, Cunningham D, Dufour P, Graeven U, Lokich J, Madajewicz S, Maroun JA et al (2004) Oral capecitabine vs intravenous 5-fluorouracil and leucovorin: integrated efficacy data and novel analyses from two large, randomised, phase III trials. Br J Cancer 90(6):1190–1197

    Article  PubMed  CAS  Google Scholar 

  39. Yoneda T, Nakai M, Moriyama K, Scott L, Ida N, Kunitomo T, Mundy GR (1993) Neutralizing antibodies to human interleukin 6 reverse hypercalcemia associated with a human squamous carcinoma. Cancer Res 53:737–740

    PubMed  CAS  Google Scholar 

  40. Zugmaier G, Paik S, Wilding G, Knabbe C, Bano M, Lupu R, Deschauer B, Simpson S, Dickson RB, Lippman M (1991) Transforming growth factor beta 1 induces cachexia and systemic fibrosis without an antitumor effect in nude mice. Cancer Res 51:3590–3594

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for the helpful advice and suggestions given on the present work by Prof. Etsuro Ogata (Cancer Institute Hospital, Tokyo) and Dr. Koh Sato, and would like to thank Ms. Chisako Ishimaru for her excellent assistance with the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaori Fujimoto-Ouchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujimoto-Ouchi, K., Onuma, E., Shirane, M. et al. Capecitabine improves cancer cachexia and normalizes IL-6 and PTHrP levels in mouse cancer cachexia models. Cancer Chemother Pharmacol 59, 807–815 (2007). https://doi.org/10.1007/s00280-006-0338-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-006-0338-y

Keywords

Navigation