Skip to main content
Log in

Imexon-based combination chemotherapy in A375 human melanoma and RPMI 8226 human myeloma cell lines

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

This study evaluated the cytotoxic effects of imexon (NSC-714597) in tumor cells when combined with a broad panel of chemotherapeutic drugs.

Methods

The sulforhodamine B (SRB) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assays were used to analyze the degree of growth inhibition for the combination studies in the A375 human malignant melanoma and RPMI 8226 human multiple myeloma cell lines, respectively. Cells were continuously exposed to both drugs at a constant molar ratio for 4–5 days. Combination effects were analyzed using the Median Effect method. Statistical significance was inferred if the 95% confidence interval for the combination interaction (C.I.) values for a particular two-drug combination did not include 1.0 (additivity). Synergy was inferred for C.I. values < 1.0 and antagonism for CI values > 1.0.

Results

Imexon was synergistic when combined with DNA-binding agents (cisplatin, dacarbazine, melphalan) and pyrimidine-based antimetabolites (cytarabine, fluorouracil, gemcitabine) in both cell lines. Antagonistic combinations with imexon included methotrexate and the topoisomerase I (TOPO I) and II (TOPO II) inhibitors irinotecan, doxorubicin, mitoxantrone and etoposide. Docetaxel was synergistic with imexon in both cell lines whereas paclitaxel and fludarabine showed a mixed result. Dexamethasone and the proteasome inhibitor bortezomib showed synergy in myeloma cells and additivity in the melanoma cells. The vinca alkaloid, vinorelbine, and the multi-targeted antifol, pemetrexed, were additive with imexon in both cell lines.

Discussion

The consistent synergy seen for imexon and alkylating agents may relate to the sulfhydryl-lowering effect of imexon, which would render cells more sensitive to electrophilic species from the alkylators. The marked synergy noted with pyrimidine-based antimetabolites was unexpected and may relate to the induction of cell cycle arrest in S-phase. The strong antagonism noted for imexon with topoisomerase I and II inhibitors may be due to the effect of imexon at increasing oxidant levels which are known to antagonize the cytotoxic effects of topoisomerase poisons. In contrast, the synergy seen with bortezomib in myeloma cells may be related to an increase in reactive oxygen species (ROS) from both drugs. These results suggest that combinations of imexon with alkylating agents and pyrimidine-based antimetabolites are rational to pursue in therapeutic studies in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adel AL, Dorr RT, Liddil JD (1993) The effect of anticancer drug sequence in experimental combination chemotherapy. Cancer Investig 11:15

    CAS  Google Scholar 

  2. Andrews PA, Murphy MP, Howell SB (1989) Characterization of cisplatin resistance in COLO 316 human ovarian carcinoma cells. Eur J Cancer Clin Oncol 25:619

    Article  PubMed  CAS  Google Scholar 

  3. Arrick BA, Nathan CF (1984) Glutathione metabolism as a determinant of therapeutic efficacy: a review. Cancer Res 44:4224

    PubMed  CAS  Google Scholar 

  4. Bedford P, Walker MC, Sharma HL, Perera A, McAuliffe CA, Masters J, Hill BT (1987) Factors influencing the sensitivity of two human bladder carcinoma cell lines to cis-diamminedichloroplatinum(II). Chem Biol Interact 61:1

    Article  PubMed  CAS  Google Scholar 

  5. Behrens BC, Hamilton TC, Masuda H, Grotzinger KR, Whang-Peng J et al (1987) Characterization of a cis-diamminedichloroplatinum(II) resistant human ovarian cancer cell line and its use in evaluation of platinum analogues. Cancer Res 47:414

    PubMed  CAS  Google Scholar 

  6. Bellamy WT, Dalton WS, Gleason MC, Grogan TM, Trent JM (1991) Development and characterization of a melphalan-resistant human multiple myeloma cell line. Cancer Res 51:995

    PubMed  CAS  Google Scholar 

  7. Camiener GW (1967) Studies of the enzymatic deamination of cytosine arabinoside-II. Biochem Pharmacol 16:1681

    Article  PubMed  CAS  Google Scholar 

  8. Capizzi RL, Keiser LW, Sartorelli AC (1977) Combination chemotherapy—theory and practice. Semin Oncol 4:227

    PubMed  CAS  Google Scholar 

  9. Chou TC, Talalay P (1984) Quantitative analysis of dose–effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27

    Article  PubMed  CAS  Google Scholar 

  10. Correal P, Cerretani D, Marsili S, Pozzessere D, Petrioli R, Messinese S, Sabatino M, Roviello F, Pinto E, Francini G, Giorgi G (2003) Gemcitabine increases systemic 5-fluorouracil exposure in advanced cancer patients. Eur J Cancer 39:1547

    Article  CAS  Google Scholar 

  11. Dalton WS, Durie BG, Alberts DS, Gerlach JH, Cress AE (1986) Characterization of a new drug-resistant human myeloma cell line that expresses P-glycoprotein. Cancer Res 46:5125

    PubMed  CAS  Google Scholar 

  12. DeVita VT, Young RC, Canellos GP (1975) Combinations versus single agent chemotherapy: a review of the basis for selection of drug treatment of cancer. Cancer 35:98

    Article  PubMed  Google Scholar 

  13. Dorr RT, Liddil JD, Klien MK, Hersh EM (1995) Preclinical pharmacokinetics and antitumor activity of imexon. Investig New Drugs 13:113

    Article  CAS  Google Scholar 

  14. Dorr RT, Raymond MA, Landowski TH, Roman NO, Fukushima S (2005) Induction of apoptosis and cell cycle arrest by imexon in human pancreatic cancer cell lines. Int J Gastrointest Cancer 36:15

    Article  PubMed  CAS  Google Scholar 

  15. Dragovich T, Gordon M, Mendeslon D, Wong L, Modiano M, Chow S, Samulitis B, O’Day S, Greiner K, Hersh E, Dorr R (2007) Phase I trial of imexon in patients with advanced malignancy. J Clin Oncol (in press)

  16. Dvorakova K, Payne CM, Tome ME, Briehl MM, McClure T, Dorr RT (2000) Induction of oxidative stress and apoptosis in myeloma cells by the aziridine-containing agent imexon. Biochem Pharmacol 60:749

    Article  PubMed  CAS  Google Scholar 

  17. Dvorakova K, Waltmire CN, Payne CM, Tome ME, Briehl MM, Dorr RT (2001) Induction of mitochondrial changes in myeloma cells by imexon. Blood 97:3544

    Article  PubMed  CAS  Google Scholar 

  18. Dvorakova K, Payne CM, Landowski TH, Tome ME, Halperin DS, Dorr RT (2002) Imexon activates an intrinsic apoptosis pathway in RPMI 8226 myeloma cells. Anticancer Drugs 13:1

    Article  Google Scholar 

  19. Faivre S, Raymond E, Woynarowski JM, Cvitkovic E (1999) Supraadditive effect of 2′.2′-difluorodeoxycytidine (gemcitabine) in combination with oxaliplatin in human cancer cell lines. Cancer Chemother Pharmacol 44:117

    Article  PubMed  CAS  Google Scholar 

  20. Fernandez Y, Miller TP, Denoyelle C, Esteban JA, Tang W-H, Benstson AL, Soengas ME (2006) Chemical blockage of the proteasome inhibitory function of bortezomib: impact on tumor cell death. J Biol Chem 281:1107–1118

    Article  PubMed  CAS  Google Scholar 

  21. Frei E (1972) Combination cancer therapy: presidential address. Cancer Res 32:2593

    PubMed  Google Scholar 

  22. Giovannetti E, Mey V, Danesi R, Mosca I, Del Tacca M (2004) Synergistic cytotoxicity and pharmacogenetics of gemcitabine and pemetrexed combination in pancreatic cancer cell lines. Clin Cancer Res 10:2936

    Article  PubMed  CAS  Google Scholar 

  23. Goldin A (1980) Combined chemotherapy. Oncology 37:3

    Article  PubMed  Google Scholar 

  24. Greenstein S, Krett NL, Kurosawa Y, Ma C, Chauhan D, Hideshima T, Anderson KC, Rosen ST (2003) Characterization of the MM.1 human multiple myeloma (MM) cell lines: a model system to elucidate the characteristics, behavior, and signaling of steroid-sensitive and -resistant MM cells. Exp Hematol 31:271

    Article  PubMed  CAS  Google Scholar 

  25. Heinemann V, Hertel LW, Grindey GB, Plunkett W (1988) Comparison of the cellular pharmacokinetics and toxicity of 2′,2′-difluorodeoxycytidine and 1-β-D-arabinofuranosylcytosine. Cancer Res 48(14):4024

    PubMed  CAS  Google Scholar 

  26. Henderson EH, Samaha RJ (1969) Evidence that drugs in multiple combinations have materially advanced the treatment of human malignancies. Cancer Res 29:2272

    CAS  Google Scholar 

  27. Iyengar BS, Dorr RT, Remers WA (2004) Chemical basis for the biological activity of imexon and related cyanoaziridines. J Med Chem 47:218

    Article  PubMed  CAS  Google Scholar 

  28. Iwao-Koizumi K, Matoba R, Ueno N, Kim SJ, Ando A, Miyoshi Y, Maeda E, Noguchi S, Kato K (2005) Prediction of docetaxel response in human breast cancer by gene expression profiling. J Clin 23:422

    Article  CAS  Google Scholar 

  29. Jenson LH, Renodon-Corniere A, Wessel I, Langer SW, Sokilde B, Carstensen EV, Sehested M, Jensen PB (2002) Maleimide is a potent inhibitor of topoisomerase II in vitro and in vivo: a new mode of catalytic inhibition. Mol Pharmacol 61:1235

    Article  Google Scholar 

  30. Kamat AM, Karashima T, Davis DW, Lashinger L, Bar-Eli M, Millikan R, Shen Y, Dinnery CPN, McConkey DJ (2004) The proteasome inhibitor bortezomib synergizes with gemcitabine to block the growth of human 253JB-V bladder tumors in vivo. Mol Cancer Ther 3:279

    PubMed  CAS  Google Scholar 

  31. Knox RJ, Friedlos F, Lydall DA et al (1986) Mechanism of cytotoxicity of anticancer platinum drugs: evidence that cis-diamminedichloro-platinum(II), and cis-diammine-(1,1-cyclobutanedicarboxylato)-platinum(II) differ only in the kinetics of their interactions with DNA. Cancer Res 46:1972

    PubMed  CAS  Google Scholar 

  32. Leszczynska A, Pfaff E (1982) Activation by reduced glutathione of methotrexate transport into isolated rat liver cells. Biochem Pharmacol 31:1911

    Article  PubMed  CAS  Google Scholar 

  33. Liebmann JE, Hahn SM, Cook JA, Lipschulz C, Mitchell JB, Kaufman DC (1993) Glutathione depletion by l-buthionine sulfoximine antagonizes taxol cytotoxicity. Cancer Res 53:2066

    PubMed  CAS  Google Scholar 

  34. Micetich KC, Barnes D, Erickson LC (1985) A comparative study of the cytotoxicity and DNA-damaging effects of cis-(diammino)(1,1-cyclobutanedicarboxylato)-platinum(II) and cis-diamminedichloroplatinum(II) on L1210 cells. Cancer Res 45:4043

    PubMed  CAS  Google Scholar 

  35. Minami T, Adachi M, Kawamura R, Zhang Y, Shinomura Y, Imai K (2005) Sulindac enhances the proteasome inhibitor bortezomib-mediated oxidative stress and anticancer activity. Cancer Ther Preclin 11:5248

    CAS  Google Scholar 

  36. Mistry P, Kelland LR, Abel G, Sidhar S, Harrap KR (1991) The relationships between glutathione, glutathione-S-transferase and cytotoxicity of platinum drugs and melphalan in eight human ovarian carcinoma cell lines. Br J Cancer 64:215

    PubMed  CAS  Google Scholar 

  37. Park JS, Yamamoto W, Sekikawa T, Matsukawa M, Okamoto R, Sasaki M, Ukon K, Tanimoto K, Kumazaki T, Nishiyama M (2002) Cellular sensitivity determinants to docetaxel in human gastrointestinal cancers. Int J Oncol 20:333

    PubMed  CAS  Google Scholar 

  38. Pei XY, Dai Y, Grant S (2004) Synergistic induction of oxidative injury and apoptosis in human multiple myeloma cells by the proteasome inhibitor bortezomib and histone deacetylase inhibitors. Clin Cancer Res 10:3839

    Article  PubMed  CAS  Google Scholar 

  39. Richon VM, Schulte N, Eastman A (1987) Multiple mechanisms of cellular resistance to platinum coordination complexes. Cancer Res 47(8):2056

    PubMed  CAS  Google Scholar 

  40. Roman NO, Fukushima S, Raymond MA, Landowski T, Dorr RT (2005) Imexon and gemcitabine are synergistic against human pancreatic cancer cells in vitro and in vivo. In: AACr 96th annual meeting, abst # 5884, vol 46, p 1385

  41. Rubinstein LV, Shoemaker RH, Paull KD, Simon RM, Tosini S, Skehan P, Scudiero DA, Monks A, Boyd MR (1990) Comparison of in vitro anticancer-drug-screening data generated with a tetrazolium assay versus a protein assay against a diverse panel of human tumor cell lines. J Natl Cancer Inst 82:1113

    Article  PubMed  CAS  Google Scholar 

  42. Saunders PP, Schultz GA (1970) Studies of the mechanism of action of the antitumor agent 5(4)-(3,3-dimethyl-1-triazeno) imidazole-4(5)-carboxamide in Bacillus subtilis. Biochem Pharmacol 19:911

    Article  PubMed  CAS  Google Scholar 

  43. Thrall BD, Raha GA, Springer DL, Meadows GG (1991) Differential sensitivities of murine melanocytes and melanoma cells to buthionine sulfoximine and anticancer drugs. Pigment Cell Res 4:234

    Article  PubMed  CAS  Google Scholar 

  44. Wong SJ, Myette MS, Wereley JP, Chitambar CR (1999) Increased sensitivity of hydroxyurea-resistant leukemic cells to gemcitabine. Clin Cancer Res 5:439

    PubMed  CAS  Google Scholar 

  45. Zhou B, Mi S, Mo X, Shih J, Tsai J, Hu E, Hsu M, Kay K, Yen Y (2002) Time and sequence dependence of hydroxyurea in combination with gemcitabine in human KB cells. Anitcancer Res 22:1369

    CAS  Google Scholar 

Download references

Acknowledgment

Supported by grant CA-17094 (RTD) from the National Institutes of Health, National Cancer Center, Bethesda, MD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert T. Dorr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scott, J., Dorr, R.T., Samulitis, B. et al. Imexon-based combination chemotherapy in A375 human melanoma and RPMI 8226 human myeloma cell lines. Cancer Chemother Pharmacol 59, 749–757 (2007). https://doi.org/10.1007/s00280-006-0329-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-006-0329-z

Keywords

Navigation