Skip to main content
Log in

Chloroacetaldehyde: mode of antitumor action of the ifosfamide metabolite

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Background: The ifosfamide metabolite chloroacetaldehyde had been made responsible for side effects only. We found in previous studies a strong cytotoxicity on human MX-1 tumor cells and xenografts in nude mice. Chloroacetaldehyde is supposed to act via alkylation or by inhibition of mitochondrial oxidative phosphorylation with decrease of ATP. The aim of this study was to further elucidate chloroacetaldehyde’s mode of action. Methods: MX-1 breast carcinoma cells were measured for ATP-content after exposure to chloroacetaldehyde. Further, the effect of chloroacetaldehyde on DNA-synthesis and its potency of causing strand-breaks or cross-links were investigated by bromodeoxyuridine-incorporation, comet-assay and a DNA interstrand cross-linking-assay. Results: Chloroacetaldehyde in high concentrations induces a reduction of ATP-levels when anaerobic glycolysis is blocked by oxamate and reduces the bromodeoxyuridine-incorporation to 46.3% after 4 h when used in IC50 concentrations (7.49 μmol/l). In addition we observed DNA single strand-breaks in MX-1 cells treated with chloroacetaldehyde visible in the Comet assay, but no DNA-cross-linking by comet assay and cross-linking assay. Conclusion: In summary, our results show that chloroacetaldehyde influences the oxidative phosphorylation in mitochondria, however, this is observed only in high concentrations and is not of clinical relevance because the tumor cells regenerate ATP by anaerobic glycolysis. Nevertheless, chloroacetaldehyde causes DNA-strand-breaks and strong inhibition of DNA-synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BrdU:

Bromodeoxyuridine

ELISA:

Enzyme-linked immuno sorbent assay

IC50 :

Inhibitor concentration 50

MMS:

Methylmethanosulfonate

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide

PBS:

Phosphate-buffered saline

Tris:

2-Amino-2-(hydroxymethyl)-propan-1,3-diol

References

  1. Kaijser GP, Beijnen JH, Bult A, Underberg WJ (1994) Ifosfamide metabolism and pharmacokinetics (review). Anticancer Res 14:517–531

    PubMed  CAS  Google Scholar 

  2. Wagner T (1994) Ifosfamide clinical pharmacokinetics. Clin Pharmacokinet 26:439–456

    PubMed  CAS  Google Scholar 

  3. Furlanut M, Franceschi L (2003) Pharmacology of ifosfamide. Oncology 65:2–6

    Article  PubMed  CAS  Google Scholar 

  4. Huang Z, Roy P, Waxman DJ (2000) Role of human microsomal CYP3A4 and CYP2B6 in catalyzing N-dechlorethylation of cyclophosphamide and ifosfamide. Biochem Pharmacol 15:961–972

    Article  Google Scholar 

  5. Nicolao P, Giometto B (2003) Neurological toxicity of ifosfamide. Oncology 65:11–16

    Article  PubMed  CAS  Google Scholar 

  6. Skinner R, Sharkey IM, Pearson AD, Craft AW (1993) Ifosfamide, mesna, and nephrotoxicity in children. J Clin Oncol 11:173–190

    PubMed  CAS  Google Scholar 

  7. Aleksa K, Ito S, Koren G (2004) Renal-tubule metabolism of ifosfamide to the nephrotoxic chloroacetaldehyde: pharmacokinetic modeling for estimation of intracellular levels. J Lab Clin Med 143:159–162

    Article  PubMed  CAS  Google Scholar 

  8. Brüggemann SK, Schlenke P, Klich S, Deeken M, Peters SO, Wagner T (2002) Stem cell toxicity of oxazaphosphorine metabolites in comparison to their antileukemic activity. Biochem Pharmacol 63:1337–1341

    Article  PubMed  Google Scholar 

  9. Brüggemann SK, Kisro J, Wagner T (1997) Ifosfamide cytotoxicity on human tumor and renal cells: role of chloroacetaldehyde in comparison to 4-hydroxyifosfamide. Cancer Res 57:2676–2680

    PubMed  Google Scholar 

  10. Börner K, Kisro J, Brüggemann SK, Hagenah W, Peters SO, Wagner T (2000) Metabolism of ifosfamide to chloroacetaldehyde contributes to antitumor activity in vivo. Drug Metab Dispos 28:573–576

    PubMed  Google Scholar 

  11. Chen CS, Lin JT, Goss KA, He YA, Halpert JR, Waxman DJ (2004) Activation of the anticancer prodrugs cyclophosphamide and ifosfamide: identification of cytochrome P450 2B enzymes and site-specific mutants with improved enzyme kinetics. Mol Pharmacol 65:1278–1285

    Article  PubMed  CAS  Google Scholar 

  12. Goldin A (1982) Ifosfamide in experimental tumor systems. Semin Oncol 9:14–23

    PubMed  CAS  Google Scholar 

  13. Brade WP, Herdrich K, Varini M (1985) Ifosfamide–pharmacology, safety and therapeutic potential. Cancer Treat Rev 12:1–47

    Article  PubMed  CAS  Google Scholar 

  14. Bramwell VH, Mouridsen HT, Santoro A, Blackledge G, Somers R, Verwey J, Dombernowsky P, Onsrud M, Thomas D, Sylvester R et al (1987) Cyclophosphamide versus ifosfamide: final report of a randomized phase II trial in adult soft tissue sarcomas. Eur J Cancer Clin Oncol 23:311–321

    Article  PubMed  CAS  Google Scholar 

  15. Rodriquez V, McCredie KB, Keating MJ et al (1978) Ifosfamide therapy for hematological malignancies in patients refractory to prior treatment. Cancer Treat Rep 62:493–497

    PubMed  Google Scholar 

  16. Spengler SJ, Singer B (1988) Formation of interstrand cross-links in chloroacetaldehyde-treated DNA demonstrated by ethidium bromide fluorescence. Cancer Res 48:4804–4806

    PubMed  CAS  Google Scholar 

  17. Kandala JC, Mrema JE, DeAngelo A, Daniel FB, Guntaka RV (1990) 2-Chloroacetaldehyde and 2-chloroacetal are potent inhibitors of DNA synthesis in animal cells. Biochem Biophys Res Commun 167:457–463

    Article  PubMed  CAS  Google Scholar 

  18. Sood C, O’Brien PJ (1993) Molecular mechanisms of chloroacetaldehyde-induced cytotoxicity in isolated rat hepatocytes. Biochem Pharmacol 46:1621–1626

    Article  PubMed  CAS  Google Scholar 

  19. Dubourg L, Michoudet C, Cochat P, Baverel G (2001) Human kidney tubules detoxify chloroacetaldehyde, a presumed nephrotoxic metabolite of ifosfamide. J Am Soc Nephrol 12:1615–1623

    PubMed  CAS  Google Scholar 

  20. Kaijser GP, Beijnen JH, Jeunink EL, Bult A, Keizer HJ, de Kraker J, Underberg WJ (1993) Determination of chloroacetaldehyde, a metabolite of oxazaphosphorine cytostatic drugs, in plasma. J Chromatogr 614:253–259

    Article  PubMed  CAS  Google Scholar 

  21. Kurowski V, Wagner T (1993) Comparative pharmacokinetics of ifosfamide, 4-hydroxyifosfamide, chloroacetaldehyde, and 2- and 3-dechloroethylifosfamide in patients on fractionated intravenous ifosfamide therapy. Cancer Chemother Pharmacol 33:36–42

    Article  PubMed  CAS  Google Scholar 

  22. Wiedemann GJ, Siemens HJ, Mentzel M, Biersack A, Wossmann W, Knocks D, Weiss C, Wagner T (1993) Effects of temperature on the therapeutic efficacy and pharmacokinetics of ifosfamide. Cancer Res 53:4268–4272

    PubMed  CAS  Google Scholar 

  23. Magaud JP, Sargent I, Mason DY (1988) Detection of human white cell proliferative responses by immunoenzymatic measurement of bromodeoxyuridine uptake. J Immunol Methods 106:95–100

    Article  PubMed  CAS  Google Scholar 

  24. Manfredi G, Yang L, Gajewski CD, Mattiazzi M (2002) Measurements of ATP in mammalian cells. Methods 26:317–326

    Article  PubMed  CAS  Google Scholar 

  25. DeLuca M, McElroy WD (1974) Kinetics of the firefly luciferase catalyzed reactions. Biochemistry 13:921–925

    Article  PubMed  CAS  Google Scholar 

  26. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  PubMed  CAS  Google Scholar 

  27. Singh NP, McCoy MT, Tice RR, Schneider EL(1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    Article  PubMed  CAS  Google Scholar 

  28. Östling O, Johanson KJ (1984) Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem Biophys Res Commun 123:291–298

    PubMed  Google Scholar 

  29. Penketh PG, Shyam K, Sartorelli AC (1997) Fluorometric assay for the determination of DNA–DNA cross-links utilizing Hoechst 33258 at neutral pH values. Anal Biochem 252:210–213

    Article  PubMed  CAS  Google Scholar 

  30. Singer E, Kuenzle CC, Thoman EP, Ulrich H (1988) DNA fingerprinting: improved DNA extraction from small blood samples. Nucleic Acids Res 16:7738–7739

    Article  PubMed  Google Scholar 

  31. Liu H, Savaraj N, Priebe W, Lampidis TJ (2002) Hypoxia increases tumor cell sensitivity to glycolytic inhibitors: a strategy for solid tumor therapy (Model C). Biochem Pharmacol 64:1745–1751

    Article  PubMed  CAS  Google Scholar 

  32. Wilkinson JH, Walter SJ (1972) Oxamate as a differential inhibitor of lactate dehydrogenase isoenzymes. Enzyme 13:170–176

    PubMed  CAS  Google Scholar 

  33. Matsuno-Yagi A, Hatefi Y (1993) Studies on the mechanism of oxidative phosphorylation. Different effects of F0 inhibitors on unisite and multisite ATP hydrolysis by bovine submitochondrial particles. J Biol Chem 268:1539–1545

    PubMed  CAS  Google Scholar 

  34. Fairbairn DW, Olive PL, O’Neill KL (1995) The comet assay: a comprehensive review. Mutat Res 339:37–59

    PubMed  CAS  Google Scholar 

  35. Spanswick VJ, Craddock C, Sekhar M, Mahendra P, Shankaranarayana P, Hughes RG, Hochhauser D, Hartley JA (2002) Repair of DNA interstrand crosslinks as a mechanism of clinical resistance to melphalan in multiple myeloma. Blood 100:224–229

    Article  PubMed  CAS  Google Scholar 

  36. Küpfer A, Aeschlimann C, Wermuth B, Cerny T (1994) Prophylaxis and reversal of ifosfamide encephalopathy with methylene-blue. Lancet 343:763–764

    Article  PubMed  Google Scholar 

  37. Peters RA (1952) Lethal synthesis. Proc R Soc Lond B Biol Sci 139:143–170

    Article  PubMed  CAS  Google Scholar 

  38. Visarius TM, Stucki JW, Lauterburg BH (1997) Stimulation of respiration by methylene blue in rat liver mitochondria. FEBS Lett 412:157–160

    Article  PubMed  CAS  Google Scholar 

  39. Visarius TM, Stucki JW, Lauterburg BH (1999) Inhibition and stimulation of long-chain fatty acid oxidation by chloroacetaldehyde and methylene blue in rats. J Pharmacol Exp Ther 289:820–824

    PubMed  CAS  Google Scholar 

  40. Rossignol R, Gilkerson R, Aggeler R, Yamagata K, Remington SJ, Capaldi RA (2004) Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells. Cancer Res 64:985–993

    Article  PubMed  CAS  Google Scholar 

  41. Simonnet H, Alazard N, Pfeiffer K, Gallou C, Beroud C, Demont J, Bouvier R, Schagger H, Godinot C (2002) Low mitochondrial respiratory chain content correlates with tumor aggressiveness in renal cell carcinoma. Carcinogenesis 23:759–768

    Article  PubMed  CAS  Google Scholar 

  42. Kuchenmeister F, Schmezer P, Engelhardt G (1998) Genotoxic bifunctional aldehydes produce specific images in the comet assay. Mutat Res 419:69–78

    PubMed  CAS  Google Scholar 

  43. Brain EG, Yu LJ, Gustafsson K, Drewes P, Waxman DJ (1998) Modulation of P450-dependent ifosfamide pharmacokinetics: a better understanding of drug activation in vivo. Br J Cancer 77:1768–1776

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements and conflict of interest statement

We thank Heike Bahrs and Monica Vollmert for their skillful technical assistance. None of the authors has a conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Wagner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brüggemann, S.K., Radike, K., Braasch, K. et al. Chloroacetaldehyde: mode of antitumor action of the ifosfamide metabolite. Cancer Chemother Pharmacol 57, 349–356 (2006). https://doi.org/10.1007/s00280-005-0061-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-005-0061-0

Keywords

Navigation