Skip to main content

Advertisement

Log in

Characterization of secretory intestinal transport of the lactone form of CPT-11

  • Short Communication
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose: It has been reported that a significant portion of the lactone form of 7-ethyl-10-(4-[1-piperidino]-1-piperidino)-carbonyloxy-camptothecin (CPT-11) is excreted into the gastrointestinal lumen via the intestinal membrane and that carboxylesterase activity, which converts CPT-11 to SN-38, was detected in the intestine. It is possible that a reduction in the excretion of CPT-11 lactone into the gastrointestinal lumen induces the gastrointestinal toxicity. The purpose of this study was to investigate the characteristics of transporter(s) that contribute to the jejunal efflux of the lactone form of CPT-11. Methods: The serosal-to-mucosal permeation rate of CPT-11 lactone was investigated in everted sac studies. Results: The secretory transport required metabolic energy and was diminished by sulfobromophthalein (BSP) and 1-naphthol, inhibitors of the ME3277 transport system. However, inhibitors of breast cancer resistance protein (Bcrp), multidrug resistance-associated protein 2 (Mrp2) and P-glycoprotein (P-gp) did not affect the secretion of CPT-11 lactone. Conclusions: The results suggest that a specific transport system, which is identical to the ME3277 transport system, plays a major role in the secretion of CPT-11 lactone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abigerges D, Armand JP, Chabot GG, Da Costa L, Fadel E, Cote C, Herait P, Gandia D (1994) Irinotecan (CPT-11) high-dose escalation using intensive high-dose loperamide to control diarrhea. J Natl Cancer Inst 86:446–449

    Article  PubMed  CAS  Google Scholar 

  2. Akimoto K, Kawai A, Ohya K (1994) Kinetic studies of the hydrolysis and lactonization of camptothecin and its derivatives, CPT-11 and SN-38, in aqueous solution. Chem Pharm Bull 42:2135–2138

    CAS  Google Scholar 

  3. Arimori K, Kuroki N, Hidaka M, Iwakiri T, Yamsaki K, Okumura M, Ono H, Takamura N, Kikuchi M, Nakano M (2003) Effect of P-glycoprotein modulator, cyclosporin A, on the gastrointestinal excretion of irinotecan and its metabolite SN-38 in rats. Pharm Res 20:910–917

    Article  PubMed  CAS  Google Scholar 

  4. Arimori K, Kuroki N, Kumamoto A, Tanoue N, Nakano M, Kumazawa E, Tohgo A, Kikuchi M (2001) Excretion into gastrointestinal tract of irinotecan lactone and carboxylate forms and their pharmacodynamics in rodents. Pharm Res 18:814–822

    Article  PubMed  CAS  Google Scholar 

  5. Atsumi R, Suzuki W, Hakusui H (1991) Identification of the metabolites of irinotecan, a new derivative of camptothecin, in rat bile and its biliary excretion. Xenobiotica 21:1159–1169

    PubMed  CAS  Google Scholar 

  6. Boesch D, Gaveriaux C, Jachez B, Pourtier-Manzanedo A, Bollinger P, Loor F (1991) In vivo circumvention of P-glycoprotein-mediated multidrug resistance of tumor cells with SDZ PSC 833. Cancer Res 51:4226–4233

    PubMed  CAS  Google Scholar 

  7. Cattori V, van Montfoort JE, Stieger B, Landmann L, Meijer DK, Winterhalter KH, Meier PJ, Hagenbuch B (2001) Localization of organic anion transporting polypeptide 4 (Oatp4) in rat liver and comparison of its substrate specificity with Oatp1, Oatp2 and Oatp3. Pflugers Arch 443:188–195

    Article  PubMed  CAS  Google Scholar 

  8. Chu XY, Kato Y, Niinuma K, Sudo KI, Hakusui H, Sugiyama Y (1997) Multispecific organic anion transporter is responsible for the biliary excretion of the camptothecin derivative irinotecan and its metabolites in rats. J Pharmacol Exp Ther 281:304–314

    PubMed  CAS  Google Scholar 

  9. Doyle LA, Yang W, Abruzzo LV, Krogmann T, Gao Y, Rishi AK, Ross DD (1998) A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci USA 95:15665–15670

    Article  PubMed  CAS  Google Scholar 

  10. Gupta E, Lestingi TM, Mick R, Ramirez J, Vokes EE, Ratain MJ (1994) Metabolic fate of irinotecan in humans: correlation of glucuronidation with diarrhea. Cancer Res 54:3723–3725

    PubMed  CAS  Google Scholar 

  11. Houghton PJ, Cheshire PJ, Hallman JC, Bissery MS, Mathieru-Boue A, Houghton JA (1993) Therapeutic efficacy of the topoisomerase I inhibitor 7-ethyl-10-(4-[1-piperidino]-1-piperidino)-carbonyloxy-camptothecin against human tumor xenografts: lack of cross-resistance in vivo in tumors with acquired resistance to the topoisomerase I inhibitor 9-dimethylaminomethyl-10-hydroxycamptothecin. Cancer Res 53:2823–2829

    PubMed  CAS  Google Scholar 

  12. Itagaki S, Chiba M, Shimamoto S, Sugawara M, Kobayashi M, Miyazaki K, Hirano T, Iseki K (2005) Characterization of secretory intestinal transport of phenolsulfonphthalein. Drug Metab Pharmacokinet 20:72–78

    Article  PubMed  CAS  Google Scholar 

  13. Itoh T, Itagaki S, Sumi Y, Hirano T, Takemoto I, Iseki K (2005) Uptake of irinotecan metabolite SN-38 by the human intestinal cell line Caco-2. Cancer Chemother Pharmacol 55:420–424

    Article  PubMed  CAS  Google Scholar 

  14. Itoh T, Takemoto I, Itagaki S, Sasaki K, Hirano T, Iseki K (2004) Biliary excretion of irinotecan and its metabolites. J Pharm Pharmaceut Sci 7:13–18

    CAS  Google Scholar 

  15. Katsura T, Inui KI (2003) Intestinal absorption of drugs mediated by drug transporters: mechanisms and regulation. Drug Metab Pharmacokinet 18:1–15

    Article  PubMed  CAS  Google Scholar 

  16. Kawato Y, Aonuma M, Matsumoto K, Sato K (1991) Production of SN-38, a main metabolite of the camptothecin derivative CPT-11, and its species and tissue specificities (in Japanese). Xenobiotic Metab Dispos 6:899–907

    CAS  Google Scholar 

  17. Lokiec F, Canal P, Gay C, Chatelut E, Armand JP, Roche H, Bugat R, Goncalves E, Mathieu-Boue A (1995) Pharmacokinetics of irinotecan and its metabolites in human blood, bile, and urine. Cancer Chemother Pharmacol 36:79–82

    Article  PubMed  CAS  Google Scholar 

  18. Okudaira N, Komiya I, Sugiyama Y (2000) Polarized efflux of mono- and diacid metabolites of ME3229, an ester-type prodrug of a glycoprotein IIb/IIIa receptor antagonist, in rat small intestine. J Pharmacol Exp Ther 295:717–723

    PubMed  CAS  Google Scholar 

  19. Narita M, Nagai E, Hagiwara H, Aburada M, Yokoi T, Kamataki T (1993) Inhibition of beta-glucuronidase by natural glucuronides of kampo medicines using glucuronide of SN-38 (7-ethyl-10-hydroxycamptothecin) as a substrate. Xenobiotica 23:5–10

    Article  PubMed  CAS  Google Scholar 

  20. Rebbeor JF, Connolly GC, Dumont ME, Ballatori N (1998) ATP-dependent transport of reduced glutathione in yeast secretory vesicles. Biochem J 334:723–729

    PubMed  CAS  Google Scholar 

  21. Slichenmyer WJ, Rowinsky EK, Donehower RC, Kaufmann SH (1993) The current status of camptothecin analogues as antitumor agents. J Natl Cancer Inst 85:271–291

    Article  PubMed  CAS  Google Scholar 

  22. Takasuna K, Hagiwara T, Hirohashi M, Nomura M, Nagai E, Yokoi T, Kamataki T (1996) Involvement of b-glucuronidase in intestinal microflora in the intestinal toxicity of the antitumor camptothecin derivative irinotecan hydrochloride (CPT-11) in rats. Cancer Res 56:3752–3757

    PubMed  CAS  Google Scholar 

  23. Walters HC, Craddock AL, Fusegawa H, Willingham MC, Dawson PA (2000) Expression, transport properties, and chromosomal location of organic anion transporter subtype 3. Am J Physiol 279:G1188-G1200

    CAS  Google Scholar 

  24. Wani MC, Ronman PE, Lindley JT, Wall ME (1980) Plant antitumor agents. 18. Synthesis and biological activity of camptothecin analogues. J Med Chem 23:554–560

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. S. Miyauchi for his advice on the experimental technique. This work was supported in part by grants from the Akiyama Foundation and the Japan Research Foundation for Clinical Pharmacology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Iseki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takemoto, I., Itagaki, S., Chiba, M. et al. Characterization of secretory intestinal transport of the lactone form of CPT-11. Cancer Chemother Pharmacol 57, 129–133 (2006). https://doi.org/10.1007/s00280-005-0042-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-005-0042-3

Keywords

Navigation