Skip to main content

Advertisement

Log in

Analysis of cytotoxicities of platinum compounds

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Extent of DNA platination, loss of cell viability, DNA fragmentation, and impairment of cellular mitochondrial oxygen consumption are measures of drug cytotoxicity. We measured and compared these effects for cisplatin, oxaliplatin and carboplatin. Because reaction with intracellular thiols may be responsible for drug resistance, we also determined the rates of Pt drug reactions with metallothionein. Jurkat cells were exposed at 37°C to 25 μM Pt drugs for 3 h. Pt-DNA adducts were determined at the end of the incubation period by atomic absorption spectroscopy. Viability, DNA fragmentation, and cellular respiration (μM O2/min/106 cells) were determined 24 h post drug exposure. The average amount of Pt-DNA adducts (Pt atoms/106 nucleotides) produced by cisplatin was 43.4, by oxaliplatin 4.8 and by carboplatin 1.5. Cisplatin decreased the rate of respiration by ~63% and oxaliplatin by ~37%. DNA fragmentation by cisplatin and oxaliplatin was very similar. Carboplatin produced an unnoticeable effect on cellular respiration, and only ~10% of the DNA fragmentation was produced by cisplatin or oxaliplatin. Although, for a given drug, all four measures of cytotoxicity were proportional, this did not hold for comparisons between the drugs. The rate constants (M−1 s−1) for reaction of cisplatin, oxaliplatin and carboplatin with Cd/Zn thionein were 0.75, 0.44 and 0.012, respectively. For comparison, the rate constants (M−1 s−1) for reaction of cisplatin, oxaliplatin and carboplatin with glutathione were 0.027, 0.038 and 0.0012, respectively. The low reactivity of carboplatin with metallothionein and glutathione suggests that its low cytotoxic activities are not due to reaction of Pt2+ with cellular thiols. Despite a tenfold difference in Pt-DNA adducts between cisplatin and oxaliplatin, the cytotoxicities of these compounds are very similar, suggesting that oxaliplatin lesions are more potent than cisplatin lesions. The results demonstrate a large influence of the ligands occupying Pt coordination spheres on the chemical and biologic activities of Pt drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

k 2 :

Second-order rate constant

k :

Zero-order rate constant for cellular respiration

AAS:

Atomic absorption spectroscopy

Pd:

Phosphor, palladium derivative of meso-tetra-(4-sulfonatophenyl)-tetrabenzoporphyrin

References

  1. Allison DC, Ridolpho P (1980) Use of a trypan blue assay to measure the deoxyribonucleic acid content and radioactive labeling of viable cells. J Histochem Cytochem 28:700–703

    PubMed  CAS  Google Scholar 

  2. Berners-Price SJ, Kuchel PW (1990) Reaction of cis- and trans-[PtCl2 (NH3)2] with reduced glutathione, studied by 1H, 13C, 195Pt and 15N-{1H} DEPT NMR. J Inorg Biochem 38:305–326

    Article  CAS  Google Scholar 

  3. Braddock PD, Connors TA, Jones M, Khokhar AR, Melzack DH, Tobe ML (1975) Structure and activity relationships of platinum complexes with anti-tumour activity. Chem-Biol Intera 11:145–161

    Article  CAS  Google Scholar 

  4. Brady HR, Kone BC, Stromski ME, Zeidel ML, Giebisch G, Gullans SR (1990) Mitochondrial injury: an early event in cisplatin toxicity to renal proximal cells. Am J Physiol 258:F1181–F1187

    PubMed  CAS  Google Scholar 

  5. Cohen GM (1997) Caspases: the executioners of apoptosis. Biochem J 326:1–16

    PubMed  CAS  Google Scholar 

  6. Corden BJ, Fine RL, Ozols RF, Collins JM (1985) Clinical pharmacology of high-dose cisplatin. Cancer Chemother Pharmacol 14:38–41

    Article  PubMed  CAS  Google Scholar 

  7. Dabrowiak JC, Goodisman J, Souid A-K (2002) Kinetic study of the reaction of cisplatin with thiols. Drug Metabol Dispos 30:1378–1384

    Article  CAS  Google Scholar 

  8. Dedon PC, Borch RF (1987) Characterization of the reactions of platinum antitumor agents with biologic and non-biologic sulfur-containing nucleophiles. Biochem Pharmacol 36:1955–1964

    Article  PubMed  CAS  Google Scholar 

  9. Ehrsson H, Wallin I, Yachnin J (2002) Pharmacokinetics of oxaliplatin in humans. Med Oncol 19:261–265

    Article  PubMed  CAS  Google Scholar 

  10. Gao W-G, Pu S-P, Liu W-P, Liu Z-D, Yang Y-K (2003) The aquation of oxaliplatin and the effect of acid. Acta Pharmaceutica Sinica 38:223–226

    PubMed  CAS  Google Scholar 

  11. Gelasco A, Lippard SJ (1999) Anticancer activity of cisplatin and related compounds. Top Biol Inorg Chem 1:1–43

    CAS  Google Scholar 

  12. Go RS, Adjei AA (1999) Review of the comparative pharmacology and clinical activity of cisplatin and carboplatin. J Clin Oncol 17:409–422

    PubMed  CAS  Google Scholar 

  13. Gong J, Traganos F, Darzynkiewicz Z (1994) A selective procedure for DNA extraction from apoptotic cells applicable for gel electrophoresis and flow cytometry. Anal Biochem 218:314–319

    Article  PubMed  CAS  Google Scholar 

  14. Gonzalez VM, Fuertes MA, Alonso C, Perez JM (2001) Is cisplatin-induced cell death always produced by apoptosis? Mol Pharmacol 59:657–663

    PubMed  CAS  Google Scholar 

  15. Green TJ, Wilson DF, Vanderkooi JM, DeFeo AP (1988) Phosphorimeters for analysis of decay profiles and real time monitoring of exponential decay and oxygen concentrations. Anal Biochem 174:73–79

    Article  PubMed  CAS  Google Scholar 

  16. Hagrman D, Goodisman J, Dabrowiak JC, Souid A-K (2003) Kinetic study on the reaction of cisplatin with metallothionein. Drug Metabol Dispos 31:916–923

    Article  CAS  Google Scholar 

  17. Hagrman D, Goodisman J, Souid A-K (2004) Kinetic study on the reaction of platinum drugs with glutathione. J Pharmacol Exp Therap 308:658–666

    Article  CAS  Google Scholar 

  18. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776

    Article  PubMed  CAS  Google Scholar 

  19. Henkle KM, Turchi JJ (1997) Induction of apoptosis in cisplatin-sensitive and -resistant human ovarian cancer cell lines. Cancer Res 57:4488–4497

    PubMed  Google Scholar 

  20. Johnson SW, Swiggard PA, Handel LM, Brennan JM, Godwin AK, Ozols RF, Hamilton TC (1994) Relationship between platinum-DNA adduct formation and cisplatin cytotoxicity in cisplatin-sensitive and -resistant human ovarian cancer cells. Cancer Res 54:5911–5916

    PubMed  CAS  Google Scholar 

  21. Kartalou M, Essigmann JM (2001) Mechanisms of resistance to cisplatin. Mutation Res 478:23–43

    PubMed  CAS  Google Scholar 

  22. Knox RJ, Friedlos F, Lydall DA, Roberts JJ (1986) Mechanism of cytotoxicity of anticancer platinum drugs: Evidence that cis-diamminedichloroplatinum(II) and cis-diammine(1,1-cyclobutanedicarboxylato)platinum(II) differ only in the kinetics of their interaction with DNA. Cancer Res 46:1972–1979

    PubMed  CAS  Google Scholar 

  23. Kollmannsberger C, Rich O, Derigs H-G, Schleucher N, Schoffski P, Beyer J, Schoch R, Sayer HG, Gerl M, Kuczyk C, Spott C, Kanz L, Bokemeyer C (2002) Activity of oxaliplatin in patients with relapsed or cisplatin-refractory germ cell cancer: a study of the German Testicular Cancer Study Group. J Clin Oncol 20:2031–2037

    Article  PubMed  CAS  Google Scholar 

  24. Kraker A, Schmidt J, Krezoski S, Petering DH (1985) Binding of cis- dichlorodiammine platinum (II) to metallothionoine in Ehrlich cells. Biochem Biophys Res Commun 31:786–792

    Article  Google Scholar 

  25. Kruidering M, Water BVD, Heer ED, Mulder GJ, Nagelkerrke JF (1997) Cisplatin-induced nephrotoxicity in porcine proximal tubular cells: mitochondrial dysfunction by inhibition of complexes I to IV of the respiratory chain. J Pharmacol Exp Ther 280:638–649

    PubMed  CAS  Google Scholar 

  26. Lau AH (1999) Apoptosis induced by cisplatin nephrotoxic injury. Kidney Int 56:1295–1298

    Article  PubMed  CAS  Google Scholar 

  27. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489

    Article  PubMed  CAS  Google Scholar 

  28. Liu J, Kraut E, Bender J, Brooks R, Balcerzak S, Grever M, Stanley H, D’Ambrosio S, Gibson-D’Ambrosio R, Chan KK (2002) Pharmacokinetics of oxaliplatin (NSC 266046) alone and in combination with paclitaxel in cancer patients. Cancer Chemo Pharmacol 49:367–374

    Article  CAS  Google Scholar 

  29. Lynn NN, Howe MC, Hale RJ, Collins GN, O’Reilly PH (2003) Over-expression of metallothionein predicts resistance of transitional cell carcinoma of bladder to intravesical mitomycin therapy. J Urol 169:721–723

    Article  PubMed  CAS  Google Scholar 

  30. Nagata S (2000) Apoptotic DNA fragmentation. Exper Cell Res 256:12–18

    Article  CAS  Google Scholar 

  31. Neidle S, Ismail IM, Sadler PJ (1980) The structure of the antitumor complex cis- (diammino) (1,1-cyclobutanedicarboxylato)Pt(II): X ray and nmr studies. J Inorg Biochem 13:205–212

    Article  CAS  Google Scholar 

  32. Oguri S, Sakakibara T, Mase H, Shimizu T, Ishikawa K, Kimura K, Smyth RD (1988) Clinical pharmacokinetics of carboplatin. J Clin Pharmacol 28:208–215

    PubMed  CAS  Google Scholar 

  33. Pattanaik A, Bachowski G, Laib J, Lemkuil D, Shaw III F, Petering DH, Hitchcock A, Saryan L (1992) Properties of the reaction of cis-dichlorodiammineplatinum (II) with metallothionein. J Biol Chem 267:16121–16128

    PubMed  CAS  Google Scholar 

  34. Pendyala L, Creaven PJ (1993) In vitro cytotoxicity, protein binding, red blood cell partitioning and biotransformation of oxaliplatin. Cancer Res 53:5970–5976

    PubMed  CAS  Google Scholar 

  35. Petit PX, Zamzami N, Vayssiere JL, Mignotte B, Kroemer G, Castedo M (1997) Implication of mitochondria in apoptosis. Mol Cell Biochem 174:185–188

    Article  PubMed  CAS  Google Scholar 

  36. Prenzler PD, McFadyen WD (1997) Reactions of cisplatin and the cis-diamminediaqua platinum(II) cation with Tris and Hepes. J Inorg Biochem 68:279–282

    Article  CAS  Google Scholar 

  37. Raymond E, Faivre S, Chaney S, Woynarowski J, Cvitkovic C (2002) Cellular and molecular pharmacology of oxaliplatin. Mol Cancer Therap 1:227–235

    CAS  Google Scholar 

  38. Reedijk J, Teuben JM (1999) Platinum-sulfur interactions involved in antitumor drugs, rescue agents and biomolecules. In: Lippert B (ed) Cisplatin, chemistry and biochemistry of a leading anticancer drug. weinheim wiley-vch, zurich, pp 319–362

  39. Robson T, Hall A, Lohrer H (1992) Increased sensitivity of a Chinese hamster ovary cell line to alkylating agents after overexpression of the human metallothionein II-A gene. Mutation Res 274:177–185

    Article  PubMed  CAS  Google Scholar 

  40. Sadowitz PD, Hubbard BA, Dabrowiak JC, Goodisman J, Tacka KA, Aktas MK, Cunningham MJ, Dubowy RL, Souid A-K (2002) Kinetics of cisplatin binding to cellular DNA and modulations by thiol-blocking agents and thiol drugs. Drug Metabol Dispos 30:183–190

    Article  CAS  Google Scholar 

  41. Saika T, Tsushima T, Ochi J, Akebi N, Nau Y, Matsumura Y, Ohmori H (1994) Over-expression of metallothionein and drug-resistance in bladder cancer. Internat J Urol 1:135–139

    Article  CAS  Google Scholar 

  42. Souid A-K, Tacka Ka, Galvan Ka, Penefsky HS (2003) Immediate effects of anticancer drugs on mitochondrial oxygen consumption. Biochem Pharmacol 66:977–987

    Article  PubMed  CAS  Google Scholar 

  43. Souid A-K, Dubowy RL, Blaney SM, Hershon L, Sullivan J, McLeod WD, Bernstein ML (2003) Phase I clinical and pharmacologic study of weekly cisplatin and irinotecan combined with amifostine for refractory solid tumors: Children’s Oncology Group trial 9970. Clin Cancer Res 9:703–710

    PubMed  CAS  Google Scholar 

  44. Tacka KA, Dabrowiak JC, Goodisman J, Penefsky HS, Souid A-K (2004) Quantitative studies on cisplatin-induced cell death. Chem Res Toxicol 17:1102–1111

    Article  PubMed  CAS  Google Scholar 

  45. Tacka KA, Szalda D, Souid A-K, Goodisman J, Dabrowiak JC (2004) Experimental and theoretical studies on the pharmacodynamics of cisplatin in jurkat cells. Chem Res Toxicol 17:1434–1444

    Article  PubMed  CAS  Google Scholar 

  46. Vaisman A, Lim SE, Patrick SM, Copeland WC, Hinkle DC, Tuchi JJ, Chaney SG (1999) Effect of DNA polymerases and high mobility group protein 1 on the carrier ligand specificity for translesion synthesis past platinum-DNA adducts. Biochem 38:11026–11039

    Article  CAS  Google Scholar 

  47. Verstraete S, Heudi O, Cailleux A, Allain P (2001) Comparison of the reactivity of oxaliplatin, Pt(diaminocyclohexane) Cl2 and Pt(diaminocyclohexane) (OH2)2 2+ with guanosine and L-methionine. J Inorg Biochem 84:129–135

    Article  PubMed  CAS  Google Scholar 

  48. Wyllie AH (1980) Glucorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature (London) 284:555–556

    Article  CAS  Google Scholar 

  49. Yang YY, Robbins PD, Lazo JS (1998) Differential transactivation of human metallothionein-iia in cisplatin-resistant and–sensitive cells. Oncol Res 10:85–98

    PubMed  CAS  Google Scholar 

  50. Zamble DB, Lippard SJ (1999) The response of cellular proteins to cisplatin-damaged DNA. In: Lippert B (ed) Cisplatin Chemistry and Biochemistry of a Leading Anticancer Drug. Weinheim Wiley-VCH, Zurich, pp 73–110

    Google Scholar 

  51. Zhang B, Tang W (1994) Kinetics of the reaction of platinum(II) complexes with metallothionein. J Inorg Biochem 56:143–153

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul-Kader Souid.

Additional information

This work was supported by a generous fund from the Paige’s Butterfly Run.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goodisman, J., Hagrman, D., Tacka, K.A. et al. Analysis of cytotoxicities of platinum compounds. Cancer Chemother Pharmacol 57, 257–267 (2006). https://doi.org/10.1007/s00280-005-0041-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-005-0041-4

Keywords

Navigation