Skip to main content
Log in

Structure-activity study of the interaction of bioreductive benzoquinone alkylating agents with DNA topoisomerase II

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose: Quantitative structure-activity studies were performed on a series of benzoquinone mustard (BM) bifunctional alkylating agents to determine whether DNA topoisomerase II (topo II) inhibition was responsible for cell growth inhibition. Methods: Topo II inhibition was evaluated by decatenation and agarose gel electrophoresis assays. Results: The BM compounds were shown to potently inhibit the decatenation activity of topo II. Though BM compounds promoted the formation of protein-DNA complexes in isolated nuclei and cells, this effect was undiminished when levels of topo II varied. The BM compounds had little activity in a topo II-mediated DNA cleavage assay, suggesting that they do not function as topo II poisons. Rather, BM-induced protein-DNA complex formation was likely due to the bifunctional alkylating reactivity of these compounds. Finally, the growth inhibitory properties of these compounds did not correlate with their ability to inhibit topo II, indicating that these compounds did not exert their cellular activity through inhibition of topo II. Some BM compounds reacted very quickly with glutathione and cysteine, likely initially through an electrophilic Michael addition. In the absence of cysteine, the growth inhibitory effects of BM were increased tenfold, indicating the modulatory effect of cysteine sulfhydryl adducts. EPR studies showed that a semiquinone-free radical was produced by some BM compounds. Conclusions: BM compounds likely exert their action through DNA cross-linking and/or by inducing oxidative stress. Although topo II is not a direct target of these agents, this enzyme may play a role in processing the consequences of direct DNA adduction and/or oxidative DNA damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BM:

Benzoquinone mustard

BSA:

Bovine serum albumin

CC:

Closed circular DNA

CHO:

Chinese hamster ovary cell line

DMSO:

Dimethyl sulfoxide

DTT:

Dithiothreitol

DZR:

Dexrazoxane-resistant cell line derived from the parent CHO cell line

NQO1:

(DT-diaphorase), NAD(P)H: quinone oxidoreductase, EC 1.6.99.2

EDTA:

Ethylenediaminetetraacetic acid

EPR:

Electron paramagnetic resonance

Na2EDTA:

Disodium EDTA

GSH:

Glutathione

Hepes:

N-[2-hydroxyethyl]piperazine-N′-[2-ethanesulfonic acid]

IC50 :

50% inhibitory concentration

kDNA:

Kinetoplast DNA

LIN:

Linear pBR322 DNA

LUMO:

Energy of the lowest unoccupied molecular orbital

MTT:

3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide

NC:

Nicked circular DNA

ROS:

Reactive oxygen species

RLX:

Relaxed pBR322 DNA

SC:

Supercoiled pBR322 DNA

SDS:

Sodium dodecyl sulfate

TAE:

Tris base (4 mM)/glacial acetic acid (0.11% (v/v))/Na2EDTA (2 mM) buffer Tris, tris(hydroxymethyl)aminomethane

UV:

Ultraviolet

References

  1. Alt C, Eyer P (1998) Ring addition of the α-amino group of glutathione increases the reactivity of benzoquinone thioethers. Chem Res Toxicol 11:1223–1233

    Article  PubMed  CAS  Google Scholar 

  2. Amaro AR, Oakley GG, Bauer U, Spielmann HP, Robertson LW (1996) Metabolic activation of PCBs to quinones: reactivity toward nitrogen and sulfur nucleophiles and influence of superoxide dismutase. Chem Res Toxicol 9:623–629

    Article  PubMed  CAS  Google Scholar 

  3. Bailey SM, Lewis AD, Patterson LH, Fisher GR, Knox RJ, Workman P (2001) Involvement of NADPH: cytochrome P450 reductase in the activation of indoloquinone EO9 to free radical and DNA damaging species. Biochem Pharmacol 62:461–468

    Article  PubMed  CAS  Google Scholar 

  4. Baker RK, Kurz EU, Pyatt DW, Irons RD, Kroll DJ (2001) Benzene metabolites antagonize etoposide-stabilized cleavable complexes of DNA topoisomerase IIα. Blood 98:830–833

    Article  PubMed  CAS  Google Scholar 

  5. Barnabé N, Hasinoff BB (2001) High-throughput fluorescence flow injection topoisomerase II inhibition assay. J Chromatogr B Biomed Sci Appl 760:263–269

    Article  PubMed  Google Scholar 

  6. Barnabé N, Zastre J, Venkataram S, Hasinoff BB (2002) Deferiprone protects against doxorubicin-induced myocyte cytotoxicity. Free Radic Biol Med 33:266–275

    Article  PubMed  Google Scholar 

  7. Bender RP, Lindsey RH Jr, Burden DA, Osheroff N (2004) N-acetyl-p-benzoquinone imine, the toxic metabolite of acetaminophen, is a topoisomerase II poison. Biochemistry 43:3731–3739

    Article  PubMed  CAS  Google Scholar 

  8. Bolton JL, Trush MA, Penning TM, Dryhurst G, Monks TJ (2000) Role of quinones in toxicology. Chem Res Toxicol 13:135–160

    Article  PubMed  CAS  Google Scholar 

  9. Burden DA, Froelich-Ammon SJ, Osheroff N (2001) Topisomerase II-mediated cleavage of plasmid DNA. Methods Mol Biol 95:283–289

    PubMed  CAS  Google Scholar 

  10. Chen H, Eastmond DA (1995) Topoisomerase inhibition by phenolic metabolites: a potential mechanism for benzene’s clastogenic effects. Carcinogenesis 16:2301–2307

    Article  PubMed  CAS  Google Scholar 

  11. Fattman C, Allan WP, Hasinoff BB, Yalowich JC (1996) Collateral sensitivity to the bisdioxopiperazine dexrazoxane (ICRF-187) in etoposide (VP-16) resistant human leukemia K562 cells. Biochem Pharmacol 52:635–642

    Article  PubMed  CAS  Google Scholar 

  12. Fortune JM, Osheroff N (2000) Topoisomerase II as a target for anticancer drugs: When enzymes stop being nice. Prog Nucleic Acid Res Mol Biol 64:221–253

    Article  PubMed  CAS  Google Scholar 

  13. Fourie J, Guziec F Jr, Guziec L, Monterrosa C, Fiterman DJ, Begleiter A (2004) Structure-activity study with bioreductive benzoquinone alkylating agents: effects on DT-diaphorase-mediated DNA crosslink and strand break formation in relation to mechanisms of cytotoxicity. Cancer Chemother Pharmacol 53:191–203

    Article  PubMed  CAS  Google Scholar 

  14. Fourie J, Oleschuk CJ, Guziec F Jr, Guziec L, Fiterman DJ, Monterrosa C, Begleiter A (2002) The effect of functional groups on reduction and activation of quinone bioreductive agents by DT-diaphorase. Cancer Chemother Pharmacol 49:101–110

    Article  PubMed  CAS  Google Scholar 

  15. Frantz CE, Chen H, Eastmond DA (1996) Inhibition of human topoisomerase II in vitro by bioactive benzene metabolites. Environ Health Perspect 104 Suppl 6:1319–1323

    Article  PubMed  CAS  Google Scholar 

  16. Frydman B, Marton LJ, Sun JS, Neder K, Witiak DT, Liu AA, Wang HM, Mao Y, Wu HY, Sanders MM, Liu LF (1997) Induction of DNA topoisomerase II-mediated DNA cleavage by β-lapachone and related naphthoquinones. Cancer Res 57:620–627

    PubMed  CAS  Google Scholar 

  17. Gantchev TG, Hunting DJ (1997) Inhibition of the topoisomerase II-DNA cleavable complex by the ortho-quinone derivative of the antitumor drug etoposide (VP-16). Biochem Biophys Res Comm 237:24–27

    Article  PubMed  CAS  Google Scholar 

  18. Gantchev TG, Hunting DJ (1998) The ortho-quinone metabolite of the anticancer drug etoposide (VP-16) is a potent inhibitor of the topoisomerase II/DNA cleavable complex. Mol Pharmacol 53:422–428

    PubMed  CAS  Google Scholar 

  19. Hasinoff BB, Wu X, Yang Y (2004) Synthesis and characterization of the biological activity of the cisplatin analogs, cis-PtCl2(dexrazoxane) and cis-PtCl2(levrazoxane), of the topoisomerase II inhibitors dexrazoxane (ICRF-187) and levrazoxane (ICRF-186). J Inorg Biochem 98:616–624

    Article  PubMed  CAS  Google Scholar 

  20. Hasinoff BB, Kuschak TI, Yalowich JC, Creighton AM (1995) A QSAR study comparing the cytotoxicity and DNA topoisomerase II inhibitory effects of bisdioxopiperazine analogs of ICRF-187 (dexrazoxane). Biochem Pharmacol 50:953–958

    Article  PubMed  CAS  Google Scholar 

  21. Hasinoff BB, Kozlowska H, Creighton AM, Allan WP, Thampatty P, Yalowich JC (1997) Mitindomide is a catalytic inhibitor of DNA topoisomerase II that acts at the bisdioxopiperazine binding site. Mol Pharmacol 52:839–845

    PubMed  CAS  Google Scholar 

  22. Hasinoff BB, Kuschak TI, Creighton AM, Fattman CL, Allan WP, Thampatty P, Yalowich JC (1997) Characterization of a Chinese hamster ovary cell line with acquired resistance to the bisdioxopiperazine dexrazoxane (ICRF-187) catalytic inhibitor of topoisomerase II. Biochem Pharmacol 53:1843–1853

    Article  PubMed  CAS  Google Scholar 

  23. Hasinoff BB, Wu X, Krokhin OV, Ens W, Standing KG, Nitiss JL, Sivaram T, Giorgianni A, Yang S, Jiang Y, Yalowich JC (2005) Biochemical and proteomics approaches to characterize topoisomerase IIα cysteines and DNA as targets responsible for cisplatin-induced inhibition of topoisomerase IIα. Mol Pharmacol 67:937–947

    Article  PubMed  CAS  Google Scholar 

  24. Hutt AM, Kalf GF (1996) Inhibition of human DNA topoisomerase II by hydroquinone and p-benzoquinone, reactive metabolites of benzene. Environ Health Perspect 104 (Suppl 6):1265–1269

    Article  PubMed  CAS  Google Scholar 

  25. Jensen LH, Renodon-Corniere A, Wessel I, Langer SW, Sokilde B, Carstensen EV, Sehested M, Jensen PB (2002) Maleimide is a potent inhibitor of topoisomerase II in vitro and in vivo: a new mode of catalytic inhibition. Mol Pharmacol 61:1235–1243

    Article  PubMed  CAS  Google Scholar 

  26. Li TK, Liu LF (2001) Tumor cell death induced by topoisomerase-targeting drugs. Annu Rev Pharmacol Toxicol 41:53–77

    Article  PubMed  Google Scholar 

  27. Lindsey RH Jr, Bromberg KD, Felix CA, Osheroff N (2004) 1,4-Benzoquinone is a topoisomerase II poison. Biochemistry 43:7563–7574

    Article  PubMed  CAS  Google Scholar 

  28. Makarova AN, Berlin AY (1967) Bis(2-chloroethyl)amino-p-benzoquinones and their derivatives. J Gen Chem USSR 37:595–560

    Google Scholar 

  29. Mekapati SB, Hansch C (2002) On the parametrization of the toxicity of organic chemicals to tetrahymena pyriformis. The problem of establishing a uniform activity. J Chem Inf Comput Sci 42:956–961

    Article  PubMed  CAS  Google Scholar 

  30. Monks TJ, Jones DC (2002) The metabolism and toxicity of quinones, quinonimines, quinone methides, and quinone-thioethers. Curr Drug Metab 3:425–438

    Article  PubMed  CAS  Google Scholar 

  31. Neder K, Marton LJ, Liu LF, Frydman B (1998) Reaction of beta-lapachone and related naphthoquinones with 2-mercaptoethanol: a biomimetic model of topoisomerase II poisoning by quinones. Cell Mol Biol (Noisy-le-grand) 44:465–474

    CAS  Google Scholar 

  32. O’Brien PJ (1991) Molecular mechanisms of quinone cytotoxicity. Chem Biol Interact 80:1–41

    Article  PubMed  CAS  Google Scholar 

  33. Ollinger K, Brunmark A (1991) Effect of hydroxy substituent position on 1,4-naphthoquinone toxicity to rat hepatocytes. J Biol Chem 266:21496–21503

    PubMed  CAS  Google Scholar 

  34. Powis G (1989) Free radical formation by antitumor quinones. Free Radic Biol Med 6:63–101

    Article  PubMed  CAS  Google Scholar 

  35. Ritke MK, Yalowich JC (1993) Altered gene expression in human leukemia K562 cells selected for resistance to etoposide. Biochem Pharmacol 46:2007–2020

    Article  PubMed  CAS  Google Scholar 

  36. Ritke MK, Allan WP, Fattman C, Gunduz NN, Yalowich JC (1994) Reduced phosphorylation of topoisomerase II in etoposide-resistant human leukemia K562 cells. Mol Pharmacol 46:58–66

    PubMed  CAS  Google Scholar 

  37. Ritke MK, Roberts D, Allan WP, Raymond J, Bergoltz VV, Yalowich JC (1994) Altered stability of etoposide-induced topoisomerase II-DNA complexes in resistant human leukemia K562 cells. Br J Cancer 69:687–697

    PubMed  CAS  Google Scholar 

  38. Sehested M, Wessel I, Jensen LH, Holm B, Oliveri RS, Kenwrick S, Creighton AM, Nitiss JL, Jensen PB (1998) Chinese hamster ovary cells resistant to the topoisomerase II catalytic inhibitor ICRF-159: A Tyr49Phe mutation confers high-level resistance to bisdioxopiperazines. Cancer Res 58:1460–1468

    PubMed  CAS  Google Scholar 

  39. Siraki AG, Chan TS, O’Brien PJ (2004) Application of quantitative structure-toxicity relationships for the comparison of the cytotoxicity of 14 p-benzoquinone congeners in primary cultured rat hepatocytes versus PC12 cells. Toxicol Sci 81:148–159

    Article  PubMed  CAS  Google Scholar 

  40. Swallow AJ (1982) Physical chemistry of semiquinones. In: Trumpower BL (ed) Function of quinones in energy conserving systems. New York: Academic, pp 59–72

    Google Scholar 

  41. Wang H, Mao Y, Chen AY, Zhou N, LaVoie EJ, Liu LF (2001) Stimulation of topoisomerase II-mediated DNA damage via a mechanism involving protein thiolation. Biochemistry 40:3316–3323

    Article  PubMed  CAS  Google Scholar 

  42. Wilson I, Wardman P, Lin TS, Sartorelli AC (1987) Reactivity of thiols towards derivatives of 2- and 6-methyl-1,4-naphthoquinone bioreductive alkylating agents. Chem Biol Interact 61:229–240

    Article  PubMed  CAS  Google Scholar 

  43. Workman P, Stratford IJ (1993) The experimental development of bioreductive drugs and their role in cancer therapy. Cancer Metastasis Rev 12:73–82

    Article  PubMed  CAS  Google Scholar 

  44. Yalowich JC, Thampatty P, Allan WP, Chee G-L, Hasinoff BB (1998) Acquired resistance to ICRF-187 (dexrazoxane) in a CHO cell line is associated with a point mutation in DNA topoisomerase IIα (topo II) and decreased drug-induced DNA-enzyme complexes. Proc Am Assoc Cancer Res 39:375

    Google Scholar 

  45. Zhu BZ, Zhao HT, Kalyanaraman B, Frei B (2002) Metal-independent production of hydroxyl radicals by halogenated quinones and hydrogen peroxide: an ESR spin trapping study. Free Radic Biol Med 32:465–473

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Canadian Institutes of Health Research (B.B.H. and A.B.), the Canada Research Chairs Program, and a Canada Research Chair in Drug Development (B.B.H.); the National Cancer Institute of Canada with funds from the Canadian Cancer Society (A.B.), the Dishman Endowment, Southwestern University (L.J.G. and F.G.); and by a grant from the NIH (grant CA90787) (J.C.Y.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian B. Hasinoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasinoff, B.B., Wu, X., Begleiter, A. et al. Structure-activity study of the interaction of bioreductive benzoquinone alkylating agents with DNA topoisomerase II. Cancer Chemother Pharmacol 57, 221–233 (2006). https://doi.org/10.1007/s00280-005-0040-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-005-0040-5

Keywords

Navigation