Skip to main content
Log in

Modulation of plasma thiols and mixed disulfides by BNP7787 in patients receiving paclitaxel/cisplatin therapy

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Background

BNP7787 (disodium 2,2′-dithio-bis-ethane sulfonate) was evaluated in a phase I clinical trial with paclitaxel and cisplatin to assess the safety and potential efficacy for preventing or reducing cisplatin- and paclitaxel-induced toxicities. During this trial the effects of BNP7787 administration on the total concentrations (oxidized plus free) of cysteine, homocysteine and GSH in plasma, free and total GSH in WBC and rate of urinary excretion of cysteine were studied. The pharmacokinetics of ultrafilterable (free, non-protein bound) platinum were also determined after cisplatin (75 mg/m2) treatment which followed paclitaxel (175 mg/m2) and BNP7787 (8.2 to 27.6 g/m2).

Methods

Plasma thiols were measured by HPLC with fluorescence detection and platinum was measured by atomic absorption spectrophotometry.

Results

BNP7787 administration produced a significant depletion of all plasma thiols in all the patients studied. Differences were noted in the kinetics of BNP7787-induced depletion of cysteine and other thiols. A significant depletion of cysteine occurred with a time lag of about 2 h after the end of BNP7787 infusion, while a reversible depletion of GSH and homocysteine occurred immediately following the start of BNP7787 infusion, with the plasma thiol/disulfide nadir corresponding to the end of infusion. The mean half-life of cysteine depletion following BNP7787 administration was 2.2 h, significantly longer than for homocysteine (0.23 h), or GSH (0.18 h; P<0.05 for both). A several-fold increase in the urinary excretion of cysteine occurred following BNP7787 administration in all patients. The BNP7787-induced thiol/disulfide depletion in plasma was not affected by cisplatin administration (P>0.05). BNP7787 administration had no effect on the ultrafilterable platinum pharmacokinetics. The 2-h lag in the depletion of cysteine, the most abundant thiol in plasma, suggests that the process may be related to the formation of free mesna from BNP7787 and that increased levels of mesna are not in circulation until after 2 h after BNP7787 administration. No effect of BNP7787 was seen on the GSH concentration in WBC, possibly reflecting the inability of these cells to take up BNP7787.

Conclusion

The results suggest that BNP7787 has the potential to enhance cisplatin antitumor activity by depleting the reactive thiols in plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A, B.
Fig. 2A, B.
Fig. 3A, B.
Fig. 4A, B.
Fig. 5A, B.
Fig. 6A, B.
Fig. 7.

Similar content being viewed by others

Abbreviations

BSO:

Buthionine sulfoximine

DTT:

Dithiothreitol

GSH:

Glutathione

Mesna:

2-Mercapto ethane sulfonate sodium

MRT:

Mean residence time

PUF:

Plasma ultrafiltrate

WBC:

White blood cells

References

  1. Anderson ME (1985) Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol 113:548

    CAS  PubMed  Google Scholar 

  2. Bailey HH, Mulcahy RT, Tutsch KD, Arzoomanian RZ, Alberti D, Tombes MB, Wilding G, Pomplun M, Spriggs DR (1994). Phase I clinical trial of intravenous L-buthionine sulfoximine and melphalan: an attempt at modulation of glutathione. J Clin Oncol 12:194

    CAS  PubMed  Google Scholar 

  3. Behrens BC, Hamilton TC, Masuda H, Grotzinger KR, Whang-Peng J, et al (1987) Characterization of a cis-diamminedichloroplatinum (II) resistant human ovarian cancer cell line and its use in evaluation of platinum analogues. Cancer Res 47:414

    CAS  PubMed  Google Scholar 

  4. Boven E, Hulscher S, Schluper HM, Erkelens C, van der Vijgh WJ (1998) BNP7787, a new protector against platinum induced toxicities, does not influence the antitumor efficacy of cisplatin or carboplatin. Proc Am Assoc Cancer Res 39:158

    Google Scholar 

  5. Burgunder JM, Varriale A, Lauterburg BH (1989) Effect of N-acetylcysteine on plasma cysteine and glutathione following paracetamol administration. Eur J Clin Pharmacol 36:127

    CAS  PubMed  Google Scholar 

  6. Cavalletti E, Cavaletti G, Tredici G, Oggioni N, Spinelli S, Reddy D, Zhao M, Wu M, Hausheer FH (1999) Oral and intravenous BNP7787 protects against paclitaxel-mediated neurotoxicity in Wistar rats. Proc Am Assoc Cancer Res 40:398

    Google Scholar 

  7. Daley-Yates PT, McBrien DCH (1984) Cisplatin metabolites in plasma, a study of their pharmacokinetics and importance in the nephrotoxic and antitumor activity of cisplatin. Biochem Pharmacol 33:3063

    CAS  PubMed  Google Scholar 

  8. Dechant KL, Brodgen RN, Pilkington T, Faulds D (1991) Ifosfamide/mesna. A review of its antineoplastic activity, pharmacokinetic properties and therapeutic efficacy in cancer. Drugs 42:428

    CAS  PubMed  Google Scholar 

  9. Deleve LD, Kaplowitz N (1991) Glutathione metabolism and its role in hepatotoxicity. Pharmacol Ther 52:287

    CAS  PubMed  Google Scholar 

  10. Deneke SM, Fanburg BL (1989) Regulation of cellular glutathione. Am J Physiol 257:L163

    CAS  PubMed  Google Scholar 

  11. El-akawi Z, Abu-hadid M, Perez R, Glavy J, Zdanowicz J, Creaven PJ, Pendyala L (1996) Altered glutathione metabolism in oxaliplatin resistant A2780 ovarian carcinoma cells. Cancer Lett 105:5

    Article  CAS  PubMed  Google Scholar 

  12. El-Yazigin A, Ernst P, Al-Rawithi S, Legayada E, Raines DA (1997) Pharmacokinetics of mesna and dimesna after simultaneous intravenous bolus and infusion administration in patients undergoing bone marrow transplantation. J Clin Pharmacol 37:618

    PubMed  Google Scholar 

  13. Fahey RC, Newton GL (1987) Determination of low molecular weight thiols using monobromobimane fluorescent labelling and high performance liquid chromatography. Methods Enzymol 143:85

    CAS  PubMed  Google Scholar 

  14. Friedman HS, Colvin M, Aisaka K, Popp J, Bossen EH, Reimer KA, Powell JB, Hilton J, Gross SS, Levi R, Bigner DD, Griffith OW (1990) Glutathione protects cardiac and skeletal muscle from cyclophosphamide-induced toxicity. Cancer Res 50:2455

    CAS  PubMed  Google Scholar 

  15. Gosland M, Lum B, Schimmelpfennig J, Baker J, Doukas M (1996) Insights into mechanisms of cisplatin resistance and potential for its clinical reversal. Pharmacotherapy 16:16

    CAS  PubMed  Google Scholar 

  16. Hamaguchi K, Godwin AK, Yakushiji M, O'Dwyer PJ, Ozols RF, Hamilton TC (1993) Cross-resistance to diverse drugs is associated with primary cisplatin resistance in ovarian cancer cell lines. Cancer Res 53:5225

    CAS  PubMed  Google Scholar 

  17. Hausheer FH, Kanter P, Cao S, Haridas K, Seetharamulu P, Reddy D, Petluru P, Zhao M, Murali D, Saxe JD, Yao S, Martinez N, Zukowski A, Rustum YM (1998) Modulation of platinum induced toxicities and therapeutic index: mechanistic insights and first and second-generation protecting agents. Semin Oncol 25:584–599

    Google Scholar 

  18. Hausheer F, Cavaletti G, Tredici G, Oggioni N, Spinelli S, Pezzoni G, Manzotti C, Haridas K, Reddy D, Zhao M, Seetharamulu P, Yao S, Pavankumar P, Murali D, Wu M, Saxe J, Cavalletti E (1999) Oral and intravenous BNP7787 protects against platinum neurotoxicity without in vitro or in vivo tumor protection. Proc Am Assoc Cancer Res 40:398

    Google Scholar 

  19. Hausheer FH, Kochat H, Reddy D, Zhao M, Seetharamulu P, Yao S, Pavankumar P, Murali D, Wu M, Saxe J, Parker A, Hamilton S (2000) BNP7787: a novel chemoprotecting agent for platinum and taxane toxicity. Proc Am Assoc Cancer Res 41:768

    Google Scholar 

  20. Hausheer F, Kanter P, Rustum Y, Cao S, Haridas K, Reddy D, Seetharamulu P, Zhao M, Yao S, Pavankumar P, Murali D (2001) BNP7787: a novel antitumor potentiating drug which protects against cisplatin and carboplatin toxicities. Proc Am Assoc Cancer Res 38:311

    Google Scholar 

  21. Hausheer FH, Kochat H, Zhao M, Seetharamulu P, Huang Q, Berghorn E (2001) BNP7787, a novel neuroprotective agent in taxane and platinum regimens, does not interfere with antitumor activity. Proc Am Assoc Cancer Res 42:370

    Google Scholar 

  22. Kleinman WA, Richie PJ (2000) Status of glutathione and other thiols and disulfides in human plasma. Biochem Pharmacol 60:19–29

    Article  CAS  PubMed  Google Scholar 

  23. Lauterburg BH, Nguyen T, Hartmann B, Junker E, Küpfer A, Cerny T (1994) Depletion of total cysteine, glutathione, and homocysteine in plasma by ifosfamide/mesna therapy. Cancer Chemother Pharmacol 35:132

    Article  CAS  PubMed  Google Scholar 

  24. Lowry OH, Rosenbrough MT, Farr AL, Randall RJ (1951) Protein measurement with folin phenol reagent. J Biol Chem 193:265

    CAS  Google Scholar 

  25. Luo FR, Wyrick SD, Chaney SG (1999) Pharmacokinetics and biotransformations of oxaliplatin in comparison with ormaplatin following a single bolus intravenous injection in rats. Cancer Chemother Pharmacol 44:19

    CAS  PubMed  Google Scholar 

  26. Meister A (1991) Glutathione deficiency produced by inhibition of its synthesis, and its reversal; applications in research and therapy. Pharmacol Ther 51:155

    Google Scholar 

  27. Mistry P, Harrap KR (1991) Historical aspects of glutathione and cancer chemotherapy. Pharmacol Ther 49:125

    Article  PubMed  Google Scholar 

  28. Mistry P, Loh SY, Kelland LR, Harrap KR (1993) Effect of buthionine sulfoximine on PtII and PtIV drug accumulation and the formation of glutathione conjugates in human ovarian-carcinoma cell lines. Int J Cancer 55:848

    CAS  PubMed  Google Scholar 

  29. Muggia FM, Los G (1993) Platinum resistance: laboratory findings and clinical implications. Stem Cells 11:182

    CAS  PubMed  Google Scholar 

  30. PDR (2001) Mesnex Injection. Physicians desk reference (PDR electronic library). Medical Economics Company, Montvale, NJ

  31. Pendyala L, Creaven PJ (1995) Pharmacokinetic and pharmacodynamic studies of N-acetylcysteine, a potential chemopreventive agent during a phase I trial. Cancer Epidemiol Biomarkers Prev 4:245

    CAS  PubMed  Google Scholar 

  32. Pendyala L, Perez R, Weinstein A, Zdanowicz J, Creaven PJ (1997) Effect of glutathione depletion on the cytotoxicity of cisplatin and iproplatin in a human melanoma cell line. Cancer Chemother Pharmacol 40:38

    Article  CAS  PubMed  Google Scholar 

  33. Pendyala L, Creaven PJ, Schwartz G, Meropol NJ, Bolanowska-Higdon W, Zdanowicz J, Murphy M, Perez R (2000) Intravenous ifosfamide/mesna is associated with depletion of plasma thiols without depletion of leukocyte glutathione. Clin Cancer Res 6:1314

    CAS  PubMed  Google Scholar 

  34. Perez R, Pendyala L, Meropol NJ, Jones V, Kindler H, Loewen G, Schwartz G, Noel D, Proefrock A, Berghorn E, Mahew E, Raghavan D, Creaven PJ (2003) Initial clinical and pharmacokinetic trials of N-phosphonoacetyl-L-aspartate (PALA) plus cisplatin and carboplatin. Cancer (in press)

  35. Rocci ML Jr, Jusko WJ (1983) Lagran program for area and moments in pharmacokinetic analysis. Comput Programs Biomed 16:203

    Google Scholar 

  36. Schulz JB, Lindenau J, Seyfried J, Dichgans J (2000) Glutathione, oxidative stress and neurodegeneration. Eur J Biochem 267:4904

    Article  CAS  PubMed  Google Scholar 

  37. Schwartz GN, Pendyala L, Amantea MA, Humphriss E, Creaven PJ (1998) Pharmacokinetics of platinum (Pt) in a phase I trial of liposomal cisplatin in patients with advanced cancer. Proc Am Assoc Cancer Res 39:364

    Google Scholar 

  38. Schwartz GN, Schilsky RL, Pendyala L, Berghorn E, Bertucci D, Ratain MJ, Hausheer FH (2000) Phase I trial of escalating doses of BNP7787 in patients receiving paclitaxel (TAX) and cisplatin (CDDP). Proc ASCO 19:218a

    Google Scholar 

  39. Shaw IC, Weeks MS (1987) Excretion of disodium Bis-2 mercaptoethanesulphonate (dimesna) in the urine of volunteers after oral dosing. Eur J Cancer Clin Oncol 23:933–935

    CAS  PubMed  Google Scholar 

  40. Tew KD (1994) Glutathione-associated enzymes in anticancer drug resistance. Cancer Res 54:4313

    CAS  PubMed  Google Scholar 

  41. Vanhoefer U, Cao SS, Minderman H, Toth K, Skenderis BS, Slovak ML, Rustum YM (1996) D,L-Buthionine-(S,R)-sulfoximine potentiates in vivo the therapeutic efficacy of doxorubicin against multidrug resistance protein-expressing tumors. Clin Cancer Res 2:1961

    CAS  PubMed  Google Scholar 

  42. Verschraagen M, Boven E, Westerman M, Ruijter R, Hausheer FH, Reddy D, Pinedo HM, van der Vijgh WJ (2000) The pharmacokinetic behavior of BNP7787 (dimesna) and its metabolite mesna and the influence of BNP7787 on the pharmacokinetics of (hydrated) cisplatin in cancer patients. Proc Am Assoc Cancer Res 41:606

    Google Scholar 

  43. Zaman GJR, Lankelma J, Tellingen OV, Beijnen J, Dekker H, Paulusma C, Oude Elferink RPJ, Bass F, Borst P (1995) Role of glutathione in the export of compounds from cells by the multidrug-resistance-associated protein. Proc Natl Acad Sci U S A 92:7690

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakshmi Pendyala.

Additional information

This study was supported by a grant from BioNumerik Pharmaceuticals, Inc. This research utilized core facilities supported in part by RPCI's NCI-funded Cancer Center Support Grant, CA16056

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pendyala, L., Schwartz, G., Smith, P. et al. Modulation of plasma thiols and mixed disulfides by BNP7787 in patients receiving paclitaxel/cisplatin therapy. Cancer Chemother Pharmacol 51, 376–384 (2003). https://doi.org/10.1007/s00280-003-0587-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-003-0587-y

Keywords

Navigation