Skip to main content

Advertisement

Log in

The effect of age on the early disposition of doxorubicin

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Clinical studies indicate that anthracycline cardiotoxicity increases with patient age. This may be due to altered pharmacokinetics or pharmacodynamics. A parameter termed 'early clearance' has been shown to decrease with age in patients receiving intravenous doxorubicin. This parameter, as defined, has no immediate relationship to any physiologically based pharmacokinetic parameter. We therefore reevaluated the pharmacokinetic data to better define the relationship between doxorubicin disposition and patient age.

Methods

Four studies provided a total of 56 patients with evaluable pharmacokinetics. The volume of the central compartment, Vc, the distribution clearance, CLd, and total body clearance, CL, were determined for each patient and regressed against age. A physiologically based pharmacokinetic (PBPK) model for doxorubicin was also used to evaluate the effects of age on doxorubicin disposition. Published blood flows associated with various patient ages were used to simulate plasma and tissue doxorubicin concentrations. The relationship between CLd and initial tumor regression was also evaluated.

Results

No correlation was found between Vc and age (P>0.05). A highly significant correlation was observed between CLd and age (P<0.0005) and there was a mild but significant relationship between CL and age (P<0.01). Use of the PBPK model with different age-related blood flows yielded virtually identical parameter values to the clinical data analyzed. Furthermore, relative tissue AUCs simulated in old and young patients compared well with those reported for daunorubicin disposition in young and old rats. In addition, a linear relationship was observed between initial tumor regression and CLd.

Conclusions

Initial concentrations of doxorubicin following intravenous administration are higher in the elderly due to a decrease in CLd rather than in Vc. On the basis of simulations with the PBPK model, the reduced CLd appears to be related to altered regional blood flows in the elderly, and such changes may be of clinical significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2a, b.
Fig. 3.
Fig. 4a, b.
Fig. 5.

Similar content being viewed by others

References

  1. Steinherz LJ, Yahalom J (1997) Toxicity. In: DeVita VT Jr, Hellman S, Rosenberg SA (eds) Cancer: principles and practice of oncology. Lippincott-Raven, Philadelphia New York, p 2739

    Google Scholar 

  2. Shureiqi I, Cantor SB, Lippman SM, Brenner DE, Chernew ME, Fendrick AM (2002) Clinical and economic impact of multiple gated acquisition scan monitoring during anthracycline therapy. Br J Cancer 86:226

    Article  CAS  PubMed  Google Scholar 

  3. Von Hoff DD, Layard MW, Basa P, Davis HL Jr, Von Hoff AL, Rozencweig M, Muggia FM (1979) Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med 91:710

    PubMed  Google Scholar 

  4. Jensen BV, Skovsgaard T, Nielsen SL (2002) Functional monitoring of anthracycline cardiotoxicity: a prospective, blinded, long-term observational study of outcome in 120 patients. Ann Oncol 13:699

    Article  CAS  PubMed  Google Scholar 

  5. Pai VB, Nahata MC (2000) Cardiotoxicity of chemotherapeutic agents: incidence, treatment and prevention. Drug Saf 22:263

    CAS  PubMed  Google Scholar 

  6. Cusack BJ, Young SP, Vestal RE, Olson RD (1997) Age-related pharmacokinetics of daunorubicin and daunorubicinol following intravenous bolus daunorubicin administration in the rat. Cancer Chemother Pharmacol 39:505

    Article  CAS  PubMed  Google Scholar 

  7. Robert J, Illiadis A, Hoerni B, Cano J-P, Durand M, Lagarde C (1982) Pharmacokinetics of adriamycin in patients with breast cancer: correlation between pharmacokinetic parameters and clinical short-term response. Eur J Clin Oncol 18:739

    CAS  Google Scholar 

  8. Robert J, Hoerni B, Vrignaud P, Lagarde C (1983) Early-phase pharmacokinetics of doxorubicin in non-Hodgkin lymphoma patients. Dose-dependent and time-dependent pharmacokinetic parameters. Cancer Chemother Pharmacol 10:115

    CAS  PubMed  Google Scholar 

  9. Robert J, Vrignaud P, Iliadis A, Egbhali H, Hoerni B (1983) Etude pharmacocinetique de la doxorubicine dans le traitement des lymphomes malins non Hodgkiniens. Nouv Rev Fr Hematol 25:91

    CAS  PubMed  Google Scholar 

  10. Robert J, Hoerni B (1983) Age dependence of the early-phase pharmacokinetics of doxorubicin. Cancer Res 43:4467

    CAS  PubMed  Google Scholar 

  11. Robert J, Bui NB, Vrignaud P (1987) Pharmacokinetics of doxorubicin in sarcoma patients. Eur J Clin Pharmacol 31:695

    CAS  PubMed  Google Scholar 

  12. Veng-Pedersen P (1989) Mean time parameters in pharmacokinetics definition, computation and clinical implications (part II). Clin Pharmacokinet 17:424

    CAS  PubMed  Google Scholar 

  13. Gibaldi M, Perrier D (1982) Multicompartment models. In: Gibaldi M, Perrier D (eds) Pharmacokinetics. Dekker, New York, p 68

  14. Harris PA, Gross JF (1975) Preliminary pharmacokinetic model for adriamycin (NSC-123127). Cancer Chemother Rep 58:819

    Google Scholar 

  15. Chan KK, Cohen JL, Gross JF, Himmelstein KJ, Bateman JR, Tsu-Lee Y, Marlis AS (1978) Prediction of adriamycin disposition in cancer patients using a physiologic, pharmacokinetics model. Cancer Treat Rep 62:1161

    CAS  PubMed  Google Scholar 

  16. Wada DR, Bjorkman S, Ebling WF, Harashima H, Harapat SR, Stanski DR (1997) Computer simulation of the effects of alterations in blood flows and body compositions on thiopental pharmacokinetics in humans. Anesthesiology 87:884

    Google Scholar 

  17. Macey R, Oster G, Zahnley T (2000) Berkeley Madonna user's guide version 8.0. University of California, Department of Molecular and Cellular Biology, Berkeley

  18. Avram MJ, Krejcie TC, Henthorn TK (1990) The relationship of age to the pharmacokinetics of early drug distribution: the concurrent disposition of thiopental and indocyanine green. Anesthesiology 72:403

    Google Scholar 

  19. Yancik R (1997) Cancer burden in the aged: an epidemiologic and demographic overview. Cancer 80:1273

    Article  CAS  PubMed  Google Scholar 

  20. Hammerlein A, Derendorf H, Lowenthal DT (1998) Pharmacokinetic and pharmacodynamic changes in the elderly. Clinical implications. Clin Pharmacokinet 35:49

    CAS  PubMed  Google Scholar 

  21. Balducci L, Extermann M (1997) Cancer chemotherapy in the older patient: what the medical oncologist needs to know. Cancer 80:1317

    CAS  PubMed  Google Scholar 

  22. Storm G, van Hoesel QG, de Groot G, Kop W, Steerenberg PA, Hillen FC (1989) A comparative study on the antitumor effect, cardiotoxicity and nephrotoxicity of doxorubicin given as a bolus, continuous infusion or entrapped in liposomes in the Lou/M Wsl rat. Cancer Chemother Pharmacol 24:341

    CAS  PubMed  Google Scholar 

  23. Preisler HD, Gessner T, Azarnia N, Bolanowska W, Epstein J, Early AP, D'Arrigo P, Vogler R, Winton L, Chervenik P, et al (1984) Relationship between plasma adriamycin levels and the outcome of remission induction therapy for acute nonlymphocytic leukemia. Cancer Chemother Pharmacol 12:125

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter R. Gwilt.

Appendix

Appendix

The differential equations for the PBPK model of doxorubicin

For lung:

$$ \eqalign{ & V_{LU} {{dC_{LU} } \over {dt}} = D + Q_{LI} {{C_{LI} } \over {R_{LI} }} + Q_H {{C_H } \over {R_H }} + Q_K {{C_K } \over {R_K }} + Q_L {{C_L } \over {R_L }} + \cr & Q_A {{C_A } \over {R_A }} + Q_B {{C_B } \over {R_B }} - \left( {Q_{LI} + Q_H + Q_K + Q_L + Q_A + Q_B } \right){{C_{LU} } \over {R_{LU} }} \cr} $$

For plasma:

$$ V_P {{dC_P } \over {dt}} = \left( {Q_{LI} + Q_H + Q_K + Q_L + Q_A + Q_B } \right)\left( {{{C_{LU} } \over {R_{LU} }} - C_P } \right) $$

For liver:

$$ V_{LI} {{dC_{LI} } \over {dt}} = \left( {Q_{LI} - Q_G - Q_S } \right)\left( {C_P - {{C_{LI} } \over {R_{LI} }}} \right) + Q_G \left( {{{C_G } \over {R_G }} - {{C_{LI} } \over {R_{LI} }}} \right) + Q_S \left( {{{C_S } \over {R_S }} - {{C_{LI} } \over {R_{LI} }}} \right) - CL{{C_{LI} } \over {R_{LI} }} $$

For kidneys:

$$ V_K {{dC_K } \over {dt}} = Q_K \left( {C_P - {{C_K } \over {R_K }}} \right) $$

For lean tissue:

$$ V_L {{dC_L } \over {dt}} = Q_L \left( {C_P - {{C_L } \over {R_L }}} \right) $$

For adipose tissue:

$$ V_A {{dC_A } \over {dt}} = Q_A \left( {C_P - {{C_A } \over {R_A }}} \right) $$

For bone marrow:

$$ V_B {{dC_B } \over {dt}} = Q_B \left( {C_P - {{C_B } \over {R_B }}} \right) $$

For gastrointestinal tissue:

$$ V_G {{dC_G } \over {dt}} = Q_G \left( {C_P - {{C_G } \over {R_G }}} \right) $$

For spleen:

$$ V_S {{dC_S } \over {dt}} = Q_S \left( {C_P - {{C_S } \over {R_S }}} \right) $$

Nomenclature

D:

Dose for i.v. bolus administration, nanograms

C:

Concentration, nanograms per milliliter

CL:

Total body clearance, milliliters per minute

Q:

Plasma flow rate, milliliters per minute

R:

Tissue-to-plasma equilibrium distribution ratio for linear binding

V :

Volume, milliliters

Subscripts

G:

Gastrointestinal tissue

K:

Kidney

LI:

Liver

L:

Lean tissue

P:

Plasma

B:

Bone marrow

H:

Heart

A:

Adipose tissue

S:

Spleen

LU:

Lung

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Gwilt, P.R. The effect of age on the early disposition of doxorubicin. Cancer Chemother Pharmacol 51, 395–402 (2003). https://doi.org/10.1007/s00280-002-0554-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-002-0554-z

Keywords

Navigation