Skip to main content

Advertisement

Log in

STK10 mutations block erythropoiesis in acquired pure red cell aplasia via impairing ribosome biogenesis

  • Research
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Acquired pure red cell aplasia (PRCA) is anemia associated with the absence of erythroblasts and is characterized by persistent and easy recurrence. However, the underlying mechanisms of acquired PRCA remain obscure, and the role of gene mutations in the pathogenesis of acquired PRCA is not fully characterized. In the present study, we detected thirty newly diagnosed patients with acquired PRCA using whole exome sequencing, and a potential role for STK10 in acquired PRCA was uncovered. The mRNA levels of STK10 in three patients with STK10 mutations were decreased. These three patients had a poor response to immunosuppressive therapy and two died in the follow-up period. Here we report that knockdown of STK10 inhibits erythroid differentiation and promotes apoptosis of K562 cells. We show that knockdown of STK10 resulted in inhibition of ribosome biogenesis and reduced ribosome levels in K562 cells. We also show that the p53 signaling pathway is activated by knockdown of STK10. Our results imply that ribosome biogenesis downregulation together with pathological p53 activation prevents normal erythropoiesis. Our study uncovers a new pathophysiological mechanism leading to acquired PRCA driven by STK10 mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Djaldetti M, Blay A, Bergman M, Salman H, Bessler H (2003) Pure red cell aplasia–a rare disease with multiple causes. Biomed Pharmacother 57(8):326–332. https://doi.org/10.1016/j.biopha.2003.08.001

    Article  CAS  PubMed  Google Scholar 

  2. Da Costa L, O’Donohue MF, van Dooijeweert B, Albrecht K, Unal S, Ramenghi U, Leblanc T, Dianzani I, Tamary H, Bartels M, Gleizes PE, Wlodarski M, MacInnes AW (2018) Molecular approaches to diagnose Diamond-Blackfan anemia: the EuroDBA experience. Eur J Med Genet 61(11):664–673. https://doi.org/10.1016/j.ejmg.2017.10.017

    Article  PubMed  Google Scholar 

  3. Ball S (2011) Diamond Blackfan anemia. Hematol Am Soc Hematol Educ Program 2011:487–491. https://doi.org/10.1182/asheducation-2011.1.487

    Article  Google Scholar 

  4. Vlachos A, Ball S, Dahl N, Alter BP, Sheth S, Ramenghi U, Meerpohl J, Karlsson S, Liu JM, Leblanc T, Paley C, Kang EM, Leder EJ, Atsidaftos E, Shimamura A, Bessler M, Glader B, Lipton JM (2008) Diagnosing and treating Diamond Blackfan anaemia: results of an international clinical consensus conference. Br J Haematol 142 (6):859–876. https://doi.org/10.1111/j.1365-2141.2008.07269.x

  5. Sawada K, Hirokawa M, Fujishima N, Teramura M, Bessho M, Dan K, Tsurumi H, Nakao S, Urabe A, Omine M, Ozawa K (2007) Long-term outcome of patients with acquired primary idiopathic pure red cell aplasia receiving cyclosporine A. A nationwide cohort study in Japan for the PRCA Collaborative Study Group. Haematologica 92(8):1021–1028. https://doi.org/10.3324/haematol.11192

    Article  CAS  PubMed  Google Scholar 

  6. Means RT Jr (2016) Pure red cell aplasia. Blood 128(21):2504–2509. https://doi.org/10.1182/blood-2016-05-717140

    Article  CAS  PubMed  Google Scholar 

  7. Henras AK, Plisson-Chastang C, O’Donohue MF, Chakraborty A, Gleizes PE (2015) An overview of pre-ribosomal RNA processing in eukaryotes. Wiley Interdiscip Rev RNA 6(2):225–242. https://doi.org/10.1002/wrna.1269

    Article  CAS  PubMed  Google Scholar 

  8. Robledo S, Idol RA, Crimmins DL, Ladenson JH, Mason PJ, Bessler M (2008) The role of human ribosomal proteins in the maturation of rRNA and ribosome production. RNA 14(9):1918–1929. https://doi.org/10.1261/rna.1132008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Le Goff S, Boussaid I, Floquet C, Raimbault A, Hatin I, Andrieu-Soler C, Salma M, Leduc M, Gautier EF, Guyot B, d’Allard D, Montel-Lehry N, Ducamp S, Houvert A, Guillonneau F, Giraudier S, Cramer-Bordé E, Morlé F, Diaz JJ, Hermine O, Taylor N, Kinet S, Verdier F, Padua RA, Mohandas N, Gleizes PE, Soler E, Mayeux P, Fontenay M (2021) p53 activation during ribosome biogenesis regulates normal erythroid differentiation. Blood 137(1):89–102. https://doi.org/10.1182/blood.2019003439

    Article  CAS  PubMed  Google Scholar 

  10. Draptchinskaia N, Gustavsson P, Andersson B, Pettersson M, Willig TN, Dianzani I, Ball S, Tchernia G, Klar J, Matsson H, Tentler D, Mohandas N, Carlsson B, Dahl N (1999) The gene encoding ribosomal protein S19 is mutated in Diamond-Blackfan anaemia. Nat Genet 21(2):169–175. https://doi.org/10.1038/5951

    Article  CAS  PubMed  Google Scholar 

  11. Gazda HT, Sheen MR, Vlachos A, Choesmel V, O’Donohue MF, Schneider H, Darras N, Hasman C, Sieff CA, Newburger PE, Ball SE, Niewiadomska E, Matysiak M, Zaucha JM, Glader B, Niemeyer C, Meerpohl JJ, Atsidaftos E, Lipton JM, Gleizes PE, Beggs AH (2008) Ribosomal protein L5 and L11 mutations are associated with cleft palate and abnormal thumbs in Diamond-Blackfan anemia patients. Am J Hum Genet 83(6):769–780. https://doi.org/10.1016/j.ajhg.2008.11.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ebert BL, Pretz J, Bosco J, Chang CY, Tamayo P, Galili N, Raza A, Root DE, Attar E, Ellis SR, Golub TR (2008) Identification of RPS14 as a 5q- syndrome gene by RNA interference screen. Nature 451(7176):335–339. https://doi.org/10.1038/nature06494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Khajuria RK, Munschauer M, Ulirsch JC, Fiorini C, Ludwig LS, McFarland SK, Abdulhay NJ, Specht H, Keshishian H, Mani DR, Jovanovic M, Ellis SR, Fulco CP, Engreitz JM, Schütz S, Lian J, Gripp KW, Weinberg OK, Pinkus GS, Gehrke L, Regev A, Lander ES, Gazda HT, Lee WY, Panse VG, Carr SA, Sankaran VG (2018) Ribosome levels selectively regulate translation and lineage commitment in human hematopoiesis. Cell 173(1):90–103e119. https://doi.org/10.1016/j.cell.2018.02.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu Y, Niu H, Ren J, Wang Z, Yan L, Xing L, Shao Z, Fu R, Cai Z, Wang H (2023) Single-cell RNA sequencing reveals abnormal transcriptome signature of erythroid progenitors in pure red cell aplasia. Genes Dis 11(1):49–52. https://doi.org/10.1016/j.gendis.2023.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Walter SA, Cutler RE Jr., Martinez R, Gishizky M, Hill RJ (2003) Stk10, a new member of the polo-like kinase kinase family highly expressed in hematopoietic tissue. J Biol Chem 278(20):18221–18228. https://doi.org/10.1074/jbc.M212556200

    Article  CAS  PubMed  Google Scholar 

  16. Trainor CD, Mas C, Archambault P, Di Lello P, Omichinski JG (2009) GATA-1 associates with and inhibits p53. Blood 114(1):165–173. https://doi.org/10.1182/blood-2008-10-180489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Batta K, Florkowska M, Kouskoff V, Lacaud G (2014) Direct reprogramming of murine fibroblasts to hematopoietic progenitor cells. Cell Rep 9(5):1871–1884. https://doi.org/10.1016/j.celrep.2014.11.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dutt S, Narla A, Lin K, Mullally A, Abayasekara N, Megerdichian C, Wilson FH, Currie T, Khanna-Gupta A, Berliner N, Kutok JL, Ebert BL (2011) Haploinsufficiency for ribosomal protein genes causes selective activation of p53 in human erythroid progenitor cells. Blood 117(9):2567–2576. https://doi.org/10.1182/blood-2010-07-295238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dai MS, Lu H (2004) Inhibition of MDM2-mediated p53 ubiquitination and degradation by ribosomal protein L5. J Biol Chem 279(43):44475–44482. https://doi.org/10.1074/jbc.M403722200

    Article  CAS  PubMed  Google Scholar 

  20. Fumagalli S, Di Cara A, Neb-Gulati A, Natt F, Schwemberger S, Hall J, Babcock GF, Bernardi R, Pandolfi PP, Thomas G (2009) Absence of nucleolar disruption after impairment of 40S ribosome biogenesis reveals an rpL11-translation-dependent mechanism of p53 induction. Nat Cell Biol 11(4):501–508. https://doi.org/10.1038/ncb1858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jaako P, Debnath S, Olsson K, Zhang Y, Flygare J, Lindström MS, Bryder D, Karlsson S (2015) Disruption of the 5S RNP-Mdm2 interaction significantly improves the erythroid defect in a mouse model for Diamond-Blackfan anemia. Leukemia 29(11):2221–2229. https://doi.org/10.1038/leu.2015.128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kulasekararaj AG, Smith AE, Mian SA, Mohamedali AM, Krishnamurthy P, Lea NC, Gäken J, Pennaneach C, Ireland R, Czepulkowski B, Pomplun S, Marsh JC, Mufti GJ (2013) TP53 mutations in myelodysplastic syndrome are strongly correlated with aberrations of chromosome 5, and correlate with adverse prognosis. Br J Haematol 160(5):660–672. https://doi.org/10.1111/bjh.12203

    Article  CAS  PubMed  Google Scholar 

  23. Li X, Wilson AF, Du W, Pang Q (2018) Cell-cycle-specific function of p53 in Fanconi Anemia hematopoietic stem and progenitor cell proliferation. Stem Cell Rep 10(2):339–346. https://doi.org/10.1016/j.stemcr.2017.12.006

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all patients who consented to disclose their medical records and answered our review calls. Their cooperation and helpful comments throw light upon our data collection and statistical analysis.

Funding

This study was supported by grants from National Natural Science Foundation of China (81900118), Chinese Academy of Medical Sciences (CAMS) Innovation Fund for Medical Sciences (2016-I2M-3-004), National Key Research and Development Program of China (2016YFC0901500), Clinical Science Foundation of Anhui Medical University (2021XKJ160) and Research Project of Integrated Traditional Chinese and Western Medicine of Tianjin Health Commission (2023078).

Author information

Authors and Affiliations

Authors

Contributions

Z.L., J.Y., and B.H. designed the study, Z.L., J.Y., X.S., X.L., X.Q., X.Z., Y.D., H.L. and D.F. performed the experiments and analyzed the data, M.C. collected samples, Z.L. J.Y. and X.S. wrote the manuscript. All authors reviewed the manuscript and approved the final version of the manuscript.

Corresponding authors

Correspondence to Bing Han or Zhangbiao Long.

Ethics declarations

Ethics approval and consent to participate

This study was approved by the Peking union medical college hospital ethics committee and was performed in accordance with the Declaration of Helsinki. Informed consent was obtained from all patients for being included in the study.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Shi, X., Liu, X. et al. STK10 mutations block erythropoiesis in acquired pure red cell aplasia via impairing ribosome biogenesis. Ann Hematol (2024). https://doi.org/10.1007/s00277-024-05802-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00277-024-05802-z

Keywords

Navigation