Skip to main content

Advertisement

Log in

Genetic variability profiling of the p53 signaling pathway in chronic lymphocytic leukemia. Individual and combined analysis of TP53, MDM2 and NQO1 gene variants

  • Research
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

TP53 gene disruption, including 17p13 deletion [del(17p)] and/or TP53 mutations, is a negative prognostic biomarker in chronic lymphocytic leukemia (CLL) associated with disease progression, treatment failure and shorter survival. Germline variants in p53 signaling pathway genes could also lead to p53 dysfunction, but their involvement in CLL has not been thoroughly evaluated. The aim of this study was to determine the association of TP53, MDM2 and NQO1 gene variability with clinical and genetic data of CLL patients. Individual genotype and haplotype data of CLL patients were compared with clinical prognostic factors, cytogenetic and molecular cytogenetic findings as well as IGHV and TP53 mutational status. The study included 116 CLL patients and 161 healthy blood donors. TP53 (rs1042522, rs59758982, rs1625895), NQO1 (rs1800566) and MDM2 (rs2279744, rs150550023) variants were genotyped using different PCR approaches. Analysis of genotype frequencies revealed no association with the risk of CLL. TP53 rs1042522, rs1625895 and MDM2 rs2279744 variants were significantly associated with abnormal karyotype and the presence of del(17p). Similarly, these two TP53 variants were associated with TP53 disruption. Moreover, TP53 C-A-nondel and G-A-del haplotypes (rs1042522-rs1625895-rs59758982) were associated with an increased likelihood of carrying del(17p) and TP53 disruptions. MDM2 T-nondel haplotype (rs2279744-rs150550023) was found to be a low risk factor for del(17p) (OR = 0.32; CI: 0.12–0.82; p = 0.02) and TP53 disruptions (OR = 0.41; CI: 0.18–0.95; p = 0.04). Our findings suggest that TP53 and MDM2 variants may modulate the risk to have chromosome alterations and TP53 disruptions, particularly del(17p). To our knowledge this is the first study of several germline variants in p53 pathway genes in Argentine patients with CLL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Kipps TJ, Stevenson FK, Wu CJ et al (2017) Chronic lymphocytic leukaemia. Nat Rev Dis Primers 3:16096. https://doi.org/10.1038/nrdp.2016.96

    Article  PubMed  PubMed Central  Google Scholar 

  2. Delgado J, Nadeu F, Colomer D, Campo E (2020) Chronic lymphocytic leukemia: from molecular pathogenesis to novel therapeutic strategies. Haematologica 105:2205–2217. https://doi.org/10.3324/haematol.2019.236000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Van Dyke DL, Werner L, Rassenti LZ et al (2016) The Döhner fluorescence in situ hybridization prognostic classification of chronic lymphocytic leukaemia (CLL): the CLL Research Consortium experience. Br J Haematol 173:105–113. https://doi.org/10.1111/bjh.13933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Campo E, Cymbalista F, Ghia P et al (2018) TP53 aberrations in chronic lymphocytic leukemia: an overview of the clinical implications of improved diagnostics. Haematologica 103:1956–1968. https://doi.org/10.3324/haematol.2018.187583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Baliakas P, Moysiadis T, Hadzidimitriou A et al (2019) Tailored approaches grounded on immunogenetic features for refined prognostication in chronic lymphocytic leukemia. Haematologica 104:360–369. https://doi.org/10.3324/haematol.2018.195032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hallek M, Shanafelt TD, Eichhorst B (2018) Chronic lymphocytic leukaemia. Lancet 391:1524–1537. https://doi.org/10.1016/S0140-6736(18)30422-7

    Article  PubMed  Google Scholar 

  7. Lindström MS, Bartek J, Maya-Mendoza A (2022) p53 at the crossroad of DNA replication and ribosome biogenesis stress pathways. Cell Death Differ 29:972–982. https://doi.org/10.1038/s41418-022-00999-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Amendolare A, Marzano F, Petruzzella V et al (2022) The underestimated role of the p53 pathway in renal cancer. Cancers (Basel) 14:5733. https://doi.org/10.3390/cancers14235733

    Article  CAS  PubMed  Google Scholar 

  9. Lodé L, Cymbalista F, Soussi T (2016) Genetic profiling of CLL: a ‘TP53 addict’ perspective. Cell Death Dis 7: e2042. https://doi.org/10.1038/cddis.2015.415

  10. Carr MI, Jones SN (2016) Regulation of the Mdm2-p53 signaling axis in the DNA damage response and tumorigenesis. Transl Cancer Res 5:707–724. https://doi.org/10.21037/tcr.2016.11.75

    Article  CAS  PubMed  Google Scholar 

  11. Asher G, Lotem J, Cohen B, Sachs L, Shaul (2001) Regulation of p53 stability and p53-dependent apoptosis by NADH quinone oxidoreductase 1. Proc Nat Acad Sci U S A 98:1188–1193. https://doi.org/10.1073/pnas.98.3.1188

  12. Zhang P, Kitchen-Smith I, Xiong L et al (2021) Germline and somatic genetic variants in the p53 pathway interact to affect cancer risk, progression, and drug response. Cancer Res 81:1667–1680. https://doi.org/10.1158/0008-5472.CAN-20-0177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Soussi T, Baliakas P (2022) Landscape of TP53 alterations in chronic lymphocytic leukemia via Data Mining Mutation databases. Front Oncol 12:808886. https://doi.org/10.3389/fonc.2022.808886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. De Luca G, Cerruti G, Lastraioli S et al (2022) The spectrum of subclonal TP53 mutations in chronic lymphocytic leukemia: a next generation sequencing retrospective study. Hematol Oncol 40:962–975. https://doi.org/10.1002/hon.3063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Morabito F, Gentile M, Monti P et al (2020) TP53 dysfunction in chronic lymphocytic leukemia: clinical relevance in the era of B-cell receptors and BCL-2 inhibitors. Expert Opin Investig Drugs 29:869–880. https://doi.org/10.1080/13543784.2020.1783239

    Article  CAS  PubMed  Google Scholar 

  16. Hallek M, Al-Sawaf O (2021) Chronic lymphocytic leukemia: 2022 update on diagnostic and therapeutic procedures. Am J Hematol 96:1679–1705. https://doi.org/10.1002/ajh.26367

    Article  PubMed  Google Scholar 

  17. Jalilian N, Maleki Y, Shakiba E et al (2021) p53 p.Pro72Arg (rs1042522) and mouse double minute 2 (MDM2) single-nucleotide polymorphism (SNP) 309 variants and their interaction in chronic lymphocytic leukemia(CLL): A survey in CLL patients from Western Iran. Int J Hematol-Oncol Stem Cell Res 15:160–169. https://doi.org/10.18502/ijhoscr.v15i3.6846

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hallek M, Cheson BD, Catovsky D et al (2018) iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL. Blood 131:2745–2760. https://doi.org/10.1182/blood-2017-09-806398

    Article  CAS  PubMed  Google Scholar 

  19. Palmitelli M, Stanganelli C, Stella F et al (2019) Analysis of basal chromosome instability in patients with chronic lymphocytic leukemia. Mutagenesis 34:245–252. https://doi.org/10.1093/mutage/gez009

    Article  CAS  PubMed  Google Scholar 

  20. McGowan-Jordan J, Hastings RJ, Moore S (eds) (2020) ISCN. An International System for Human Cytogenomic Nomenclature. Cytogenet Genome Res 160:341–503. https://doi.org/10.1159/000516655

  21. Stanganelli C, Travella A, Bezares R, Slavutsky I (2013) Immunoglobulin gene rearrangements and mutational status in Argentinian patients with chronic lymphocytic leukemia. Clin Lymph Myeloma Leuk 13:447–457. https://doi.org/10.1016/j.clml.2013.02.019

    Article  CAS  Google Scholar 

  22. Malcikova J, Tausch E, Rossi D et al (2018) ERIC recommendations for TP53 mutation analysis in chronic lymphocytic leukemia-update on methodological approaches and results interpretation. Leukemia 32:1070–1080. https://doi.org/10.1038/s41375-017-0007-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lajin B, Alachkar A, Alhaj Sakur A (2012) A quadruplex tetra-primer ARMS–PCR method for the simultaneous detection of TP53 Arg72Pro, IVS3 16 bp Del/Ins and IVS6 + 62A > G, and NQO1 C609T polymorphisms. Gene 504:268–273. https://doi.org/10.1016/j.gene.2012.05.024

    Article  CAS  PubMed  Google Scholar 

  24. Dong D, Gao X, Zhu Z, Yu Q, Bian S, Gao Y (2012) A 40-bp insertion/deletion polymorphism in the constitutive promoter of MDM2 confers risk for hepatocellular carcinoma in a Chinese population. Gene 497:66–70. https://doi.org/10.1016/j.gene.2012.01.004

    Article  CAS  PubMed  Google Scholar 

  25. Zhang X, Miao X, Guo Y et al (2006) Genetic polymorphisms in cell cycle regulatory genes MDM2 and TP53 are associated with susceptibility to lung cancer. Hum Mutat 27:110–117. https://doi.org/10.1002/humu.20277

    Article  CAS  PubMed  Google Scholar 

  26. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265. https://doi.org/10.1093/bioinformatics/bth457

    Article  CAS  PubMed  Google Scholar 

  27. Buccheri V, Barreto WG, Fogliatto LM, Capra M, Marchiani M, Rocha V (2018) Prognostic and therapeutic stratification in CLL: focus on 17p deletion and p53 mutation. Ann Hematol 97:2269–2278. https://doi.org/10.1007/s00277-018-3503-6

    Article  CAS  PubMed  Google Scholar 

  28. Kochethu G, Delgado J, Pepper C et al (2006) Two germ line polymorphisms of the tumour suppressor gene p53 may influence the biology of chronic lymphocytic leukaemia. Leuk Res 30:1113–1118. https://doi.org/10.1016/j.leukres.2005.12.014

    Article  CAS  PubMed  Google Scholar 

  29. Mohammed Basabaeen AA, Abdelgader EA, Babekir EA et al (2019) TP53 gene 72 Arg/Pro (rs1042522) single nucleotide polymorphism contribute to increase the risk of B-Chronic lymphocytic leukemia in the Sudanese Population. Asian Pac J Cancer Prev 20:1579–1585. https://doi.org/10.31557/APJCP.2019.20.5.1579

    Article  PubMed  Google Scholar 

  30. Ounalli A, Moumni I, Mechaal A, Chakroun A, Barmat M, Rhim REE, Menif S, Safra I (2023) TP53 gene 72 Arg/Pro (rs1042522) single nucleotide polymorphism increases the risk and the severity of chronic lymphocytic leukemia. Front Oncol 13:1272876. https://doi.org/10.3389/fonc.2023.1272876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bilous N, Abramenko I, Saenko V et al (2017) Clinical relevance of TP53 polymorphic genetic variations in chronic lymphocytic leukemia. Leuk Res 58:1–8. https://doi.org/10.1016/j.leukres.2017.03.009

    Article  CAS  PubMed  Google Scholar 

  32. Dong HJ, Fang C, Fan L et al (2012) MDM2 promoter SNP309 is associated with an increased susceptibility to chronic lymphocytic leukemia and correlates with MDM2 mRNA expression in Chinese patients with CLL. Int J Cancer 130:2054–2061. https://doi.org/10.1002/ijc.26222

    Article  CAS  PubMed  Google Scholar 

  33. Zhuo W, Zhang L, Ling J, Zhu B, Chen Z (2012) MDM2 SNP309 variation contributes to leukemia risk: meta-analyses based on 7259 subjects. Leuk Lymph 53:2245–2252. https://doi.org/10.3109/10428194.2012.691485

    Article  CAS  Google Scholar 

  34. Begleiter A, Hewitt D, Gibson SB, Johnston JB (2009) Investigation of an NQO1 polymorphism as a possible risk and prognostic factor for chronic lymphocytic leukemia. Leuk Res 33:74–81. https://doi.org/10.1016/j.leukres.2008.06.030

    Article  CAS  PubMed  Google Scholar 

  35. Maleki Y, Alahbakhshi Z, Heidari Z et al (2019) NOTCH1, SF3B1, MDM2 and MYD88 mutations in patients with chronic lymphocytic leukemia. Oncol Lett 17:4016–4023. https://doi.org/10.3892/ol.2019.10048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Basu S, Murphy ME (2016) Genetic modifiers of the p53 pathway. Cold Spring Harb Perspect Med 6:a026302. https://doi.org/10.1101/cshperspect.a026302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bilous NI, Abramenko IV, Chumak AA, Dyagil IS, Martina ZV (2014) Gene polymorphisms of p53-mediated apoptosis in chronic lymphocytic leukemia patients: features of distribution depending on radiation factor in anamnesis. Probl Rad Med Radiobiol 19:223–230

    CAS  Google Scholar 

  38. Gemenetzi K, Galigalidou C, Vlachonikola E et al (2017) Tp53 gene p72R polymorphism in chronic lymphocytic leukemia: incidence and clinical significance amongst cases with unmutated immunoglobulin receptors. Leuk Lymph 58:726–728. https://doi.org/10.1080/10428194.2016.1211276

    Article  Google Scholar 

  39. Majid A, Richards T, Dusanjh P et al (2011) TP53 codon 72 polymorphism in patients with chronic lymphocytic leukaemia: identification of a subgroup with mutated IGHV genes and poor clinical outcome. Br J Haematol 153:533–535. https://doi.org/10.1111/j.1365-2141.2010.08484.x

    Article  PubMed  Google Scholar 

  40. Cabrero-Becerra MA, García-Vela J, Sánchez-Godoy P, Arias-Arias A, García-Marcos JA (2021) Influence of polymorphisms of codon 72 of tp53 in patients with chronic lymphocytic leukemia. in HemaSphere. 5(S2): pp 276–277. Abstract book. https://doi.org/10.1097/HS9.0000000000000566

  41. Peller S, Kopilova Y, Slutzki S, Halevy A, Kvitko K, Rotter V (1995) A Novel Polymorphism in Intron 6 of the human p53 gene: a possible association with cancer predisposition and susceptibility. DNA Cell Biol 14:983–990. https://doi.org/10.1089/dna.1995.14.983

    Article  CAS  PubMed  Google Scholar 

  42. Sauka C, Kohút A, Kundrát I, Janík M (2008) Polymorfizmus génu p 53 a apoptóza u pacientov s nádormi pl’úc–nase sledovanie [Polymorphism of gene p53 and apoptosis in patients with malignant lung disease–our observation]. Klin Onkol 21:98–103

    CAS  PubMed  Google Scholar 

  43. Wu X, Zhao H, Amos CI et al (2002) p53 genotypes and haplotypes associated with lung cancer susceptibility and ethnicity. J Nat Cancer Inst 94:681–690. https://doi.org/10.1093/jnci/94.9.681

    Article  CAS  PubMed  Google Scholar 

  44. Mukhammadiyeva GF, Karimov DO, Bakirov AB, Karimova LK (2017) TP53 gene polymorphisms and occupational skin Cancer risks for workers of glass Fiber manufacture. Iran J Publ Health 46:1495–1501

    Google Scholar 

  45. Bond GL, Hu W, Bond EE et al (2004) A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 119:591–602. https://doi.org/10.1016/j.cell.2004.11.022

    Article  CAS  PubMed  Google Scholar 

  46. Bond GL, Levine AJ (2007) A single nucleotide polymorphism in the p53 pathway interacts with gender, environmental stresses and tumor genetics to influence cancer in humans. Oncogene 26:1317–1323. https://doi.org/10.1038/sj.onc.1210199

    Article  CAS  PubMed  Google Scholar 

  47. Gryshchenko I, Hofbauer S, Stoecher M et al (2008) MDM2 SNP309 is associated with poor outcome in B-cell chronic lymphocytic leukemia. J Clin Oncol 26:2252–2257. https://doi.org/10.1200/JCO.2007.11.5212

    Article  CAS  PubMed  Google Scholar 

  48. Willander K, Ungerbäck J, Karlsson K, Fredrikson M, Söderkvist P, Linderholm M (2010) MDM2 SNP309 promoter polymorphism, an independent prognostic factor in chronic lymphocytic leukemia. Eur J Haematol 85:251–256. https://doi.org/10.1111/j.1600-0609.2010.01470.x

    Article  CAS  PubMed  Google Scholar 

  49. Sturm I, Bosanquet AG, Hummel M, Dörken B, Daniel PT (2005) In B-CLL, the codon 72 polymorphic variants of p53 are not related to drug resistance and disease prognosis. BMC Cancer 5:105. https://doi.org/10.1186/1471-2407-5-105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lahiri O, Harris S, Packham G, Howell M (2007) p53 pathway gene single nucleotide polymorphisms and chronic lymphocytic leukemia. Cancer Genet Cytogenet 179:36–44. https://doi.org/10.1016/j.cancergencyto.2007.07.013

    Article  CAS  PubMed  Google Scholar 

  51. Benner A, Mansouri L, Rossi D et al (2014) MDM2 promotor polymorphism and disease characteristics in chronic lymphocytic leukemia: results of an individual patient data-based meta-analysis. Haematologica 99:1285–1291. https://doi.org/10.3324/haematol.2013.101170

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the patients and controls for their participation in this study.

Funding

The present work was partly funded by the CONICET (National Scientific and Technical Research Council) grant numbers: PUE 2018-0042 (IS) and PIP 2021 − 1779 (AFF, IS). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

MBF, MRA, VMG, CS, CG and CR participate in the acquisition, analysis, and interpretation of data; FT, JB, RB, and VH were responsible for clinical data collection and follow up of patients; MBF, AF and IS were responsible for the study conceptualization, writing the first draft of the manuscript, review and editing the final version. All authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to María Belén Fontecha or Ariela Freya Fundia.

Ethics declarations

Ethics approval and consent to participate

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of the National Academy of Medicine from Buenos Aires, Argentina (Nº 32/23/CEIANM). Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fontecha, M.B., Anadón, M.D.R., Mercado Guzmán, V. et al. Genetic variability profiling of the p53 signaling pathway in chronic lymphocytic leukemia. Individual and combined analysis of TP53, MDM2 and NQO1 gene variants. Ann Hematol (2024). https://doi.org/10.1007/s00277-024-05794-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00277-024-05794-w

Keywords

Navigation