Skip to main content
Log in

Inhibition of NRF2 signaling overcomes acquired resistance to arsenic trioxide in FLT3-mutated Acute Myeloid Leukemia

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

De novo acute myeloid leukemia (AML) patients with FMS-like tyrosine kinase 3 internal tandem duplications (FLT3-ITD) have worse treatment outcomes. Arsenic trioxide (ATO) used in the treatment of acute promyelocytic leukemia (APL) has been reported to be effective in degrading the FLT3 protein in AML cell lines and sensitizing non-APL AML patient samples in-vitro. We have previously reported that primary cells from FLT3-ITD mutated AML patients were sensitive to ATO in-vitro compared to other non-M3 AML and molecular/pharmacological inhibition of NF-E2 related factor 2 (NRF2), a master regulator of antioxidant response improved the chemosensitivity to ATO and daunorubicin even in non FLT3-ITD mutated cell lines and primary samples. We examined the effects of molecular/pharmacological suppression of NRF2 on acquired ATO resistance in the FLT3-ITD mutant AML cell line (MV4-11-ATO-R). ATO-R cells showed increased NRF2 expression, nuclear localization, and upregulation of bonafide NRF2 targets. Molecular inhibition of NRF2 in this resistant cell line improved ATO sensitivity in vitro. Digoxin treatment lowered p-AKT expression, abrogating nuclear NRF2 localization and sensitizing cells to ATO. However, digoxin and ATO did not sensitize non-ITD AML cell line THP1 with high NRF2 expression. Digoxin decreased leukemic burden and prolonged survival in MV4-11 ATO-R xenograft mice. We establish that altering NRF2 expression may reverse acquired ATO resistance in FLT3-ITD AML.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable

References

  1. George B et al (2004) Treatment of children with newly diagnosed acute promyelocytic leukemia with arsenic trioxide: a single center experience. Leukemia 18:1587–1590

    Article  CAS  PubMed  Google Scholar 

  2. Mathews V et al (2006) Single-agent arsenic trioxide in the treatment of newly diagnosed acute promyelocytic leukemia: durable remissions with minimal toxicity. Blood 107:2627–2632

    Article  CAS  PubMed  Google Scholar 

  3. Mathews V et al (2002) Arsenic trioxide in the treatment of newly diagnosed acute promyelocytic leukemia: a single center experience. Am J Hematol 70:292–299

    Article  CAS  PubMed  Google Scholar 

  4. Mathews V et al (2010) Single-agent arsenic trioxide in the treatment of newly diagnosed acute promyelocytic leukemia: long-term follow-up data. J Clin Oncol Off J Am Soc Clin Oncol 28:3866–3871

    Article  CAS  Google Scholar 

  5. Hu J et al (1999) Long-term survival and prognostic study in acute promyelocytic leukemia treated with all-trans-retinoic acid, chemotherapy, and As2O3: an experience of 120 patients at a single institution. Int J Hematol 70:248–260

    CAS  PubMed  Google Scholar 

  6. Soignet SL et al (1998) Complete Remission after Treatment of Acute Promyelocytic Leukemia with Arsenic Trioxide. N Engl J Med 339:1341–1348

    Article  CAS  PubMed  Google Scholar 

  7. Niu H et al (2017) Endogenous Retinoid X Receptor ligands in mouse hematopoietic cells. Sci Signal 10:eaan1011

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhou J et al (2010) Single-agent arsenic trioxide in the treatment of children with newly diagnosed acute promyelocytic leukemia. Blood 115:1697–1702

    Article  CAS  PubMed  Google Scholar 

  9. Parmar S et al (2004) Phase II trial of arsenic trioxide in relapsed and refractory acute myeloid leukemia, secondary leukemia and/or newly diagnosed patients at least 65 years old. Leuk Res 28:909–919

    Article  CAS  PubMed  Google Scholar 

  10. Burnett AK et al (2011) The addition of arsenic trioxide to low-dose Ara-C in older patients with AML does not improve outcome. Leukemia 25:1122–1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Welch JS et al (2011) Combination decitabine, arsenic trioxide, and ascorbic acid for the treatment of myelodysplastic syndrome and acute myeloid leukemia: a phase I study. Am J Hematol 86:796–800

    Article  CAS  PubMed  Google Scholar 

  12. Rojewski MT, Baldus C, Knauf W, Thiel E, Schrezenmeier H (2002) Dual effects of arsenic trioxide (As2O3) on non-acute promyelocytic leukaemia myeloid cell lines: induction of apoptosis and inhibition of proliferation. Br J Haematol 116:555–563

    Article  CAS  PubMed  Google Scholar 

  13. Noguera NI et al (2017) High-dose ascorbate and arsenic trioxide selectively kill acute myeloid leukemia and acute promyelocytic leukemia blasts in vitro. Oncotarget 8:32550–32565

    Article  PubMed  PubMed Central  Google Scholar 

  14. Abraham A et al (2014) ABCB6 RNA expression in leukemias–expression is low in acute promyelocytic leukemia and FLT3-ITD-positive acute myeloid leukemia. Ann Hematol 93:509–512

    Article  PubMed  Google Scholar 

  15. Varatharajan S et al (2017) ATP-binding casette transporter expression in acute myeloid leukemia: association with in vitro cytotoxicity and prognostic markers. Pharmacogenomics 18:235–244

    Article  CAS  PubMed  Google Scholar 

  16. Nagai K et al (2018) Combination of ATO with FLT3 TKIs eliminates FLT3/ITD+ leukemia cells through reduced expression of FLT3. Oncotarget 9:32885–32899

    Article  PubMed  PubMed Central  Google Scholar 

  17. Liang C et al (2020) Arsenic trioxide and all-trans retinoic acid suppress the expression of FLT3-ITD. Leuk Lymphoma 61:2692–2699

    Article  CAS  PubMed  Google Scholar 

  18. Liu X-J et al (2020) Arsenic trioxide induces autophagic degradation of the FLT3-ITD mutated protein in FLT3-ITD acute myeloid leukemia cells. J Cancer 11:3476–3482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Karathedath S et al (2017) Molecular and Pharmacological Inhibition of ATP Binding Cassette Transporter ABCB6 Decreases Chemoresistance in Acute Myeloid Leukemia. Blood 130:1254

    Google Scholar 

  20. Liu X et al (2023) Targeting NRF2 uncovered an intrinsic susceptibility of acute myeloid leukemia cells to ferroptosis. Exp Hematol Oncol 12:47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Menegon S, Columbano A, Giordano S (2016) The Dual Roles of NRF2 in Cancer. Trends Mol Med 22:578–593

    Article  CAS  PubMed  Google Scholar 

  22. Rojo de la Vega M, Chapman E, Zhang DD (2018) NRF2 and the Hallmarks of Cancer. Cancer Cell 34:21–43

    Article  CAS  PubMed  Google Scholar 

  23. Wu S, Lu H, Bai Y (2019) Nrf2 in cancers: A double-edged sword. Cancer Med 8:2252–2267

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wang X-J et al (2008) Nrf2 enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2. Carcinogenesis 29:1235–1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lin P et al (2019) The high NRF2 expression confers chemotherapy resistance partly through up-regulated DUSP1 in myelodysplastic syndromes. Haematologica 104:485–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim HG et al (2019) Quinacrine-Mediated Inhibition of Nrf2 Reverses Hypoxia-Induced 5-Fluorouracil Resistance in Colorectal Cancer. Int J Mol Sci 20:4366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sun Y, Abdul Aziz A, Bowles K, Rushworth S (2018) High NRF2 expression controls endoplasmic reticulum stress induced apoptosis in multiple myeloma. Cancer Lett 412:37–45

    Article  CAS  PubMed  Google Scholar 

  28. Xiang Y et al (2018) Brusatol Enhances the Chemotherapy Efficacy of Gemcitabine in Pancreatic Cancer via the Nrf2 Signalling Pathway. Oxid Med Cell Longev 2018:2360427

    Article  PubMed  PubMed Central  Google Scholar 

  29. Khamari R et al (2018) Glucose metabolism and NRF2 coordinate the antioxidant response in melanoma resistant to MAPK inhibitors. Cell Death Dis 9:325

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kitamura H, Motohashi H (2018) NRF2 addiction in cancer cells. Cancer Sci 109:900–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shin D, Kim EH, Lee J, Roh J-L (2018) Nrf2 inhibition reverses resistance to GPX4 inhibitor-induced ferroptosis in head and neck cancer. Free Radic Biol Med 129:454–462

    Article  CAS  PubMed  Google Scholar 

  32. Silva MM, Rocha CRR, Kinker GS, Pelegrini AL, Menck CFM (2019) The balance between NRF2/GSH antioxidant mediated pathway and DNA repair modulates cisplatin resistance in lung cancer cells. Sci Rep 9:17639

    Article  PubMed  PubMed Central  Google Scholar 

  33. Singh A et al (2021) NRF2 Activation Promotes Aggressive Lung Cancer and Associates with Poor Clinical Outcomes. Clin. Cancer Res. Off J Am Assoc Cancer Res 27:877–888

    Article  CAS  Google Scholar 

  34. Cheng C et al (2021) Inhibition of Nrf2-mediated glucose metabolism by brusatol synergistically sensitizes acute myeloid leukemia to Ara-C. Biomed Pharmacother Biomedecine Pharmacother 142:111652

    Article  CAS  Google Scholar 

  35. Endo S et al (2021) Targeting Nrf2-antioxidant signalling reverses acquired cabazitaxel resistance in prostate cancer cells. J Biochem (Tokyo) 170:89–96

    Article  CAS  PubMed  Google Scholar 

  36. Küper A et al (2021) Overcoming hypoxia-induced resistance of pancreatic and lung tumor cells by disrupting the PERK-NRF2-HIF-axis. Cell Death Dis 12:82

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sivinski J, Zhang DD, Chapman E (2021) Targeting NRF2 to treat cancer. Semin Cancer Biol 76:61–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kumar H, Kumar RM, Bhattacharjee D, Somanna P, Jain V (2022) Role of Nrf2 Signaling Cascade in Breast Cancer: Strategies and Treatment. Front Pharmacol 13:720076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kannan S et al (2022) Targeting the NRF2/HO-1 Antioxidant Pathway in FLT3-ITD-Positive AML Enhances Therapy Efficacy. Antioxid Basel Switz 11:717

    Article  CAS  Google Scholar 

  40. Zhong Y et al (2013) Drug resistance associates with activation of Nrf2 in MCF-7/DOX cells, and wogonin reverses it by down-regulating Nrf2-mediated cellular defense response. Mol Carcinog 52:824–834

    Article  CAS  PubMed  Google Scholar 

  41. Park SH et al. (2018) Resistance to gefitinib and cross-resistance to irreversible EGFR-TKIs mediated by disruption of the Keap1-Nrf2 pathway in human lung cancer cells. FASEB J Off Publ Fed Am Soc Exp Biol. fj201800011R.  https://doi.org/10.1096/fj.201800011R.

  42. Liu Q et al (2010) The NRF2-mediated oxidative stress response pathway is associated with tumor cell resistance to arsenic trioxide across the NCI-60 panel. BMC Med Genomics 3:37

    Article  PubMed  PubMed Central  Google Scholar 

  43. Singh A et al (2016) Small Molecule Inhibitor of NRF2 Selectively Intervenes Therapeutic Resistance in KEAP1-Deficient NSCLC Tumors. ACS Chem Biol 11:3214–3225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Panieri E, Saso L (2019) Potential Applications of NRF2 Inhibitors in Cancer Therapy. Oxid Med Cell Longev 2019:8592348

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zhou Y et al (2020) Flumethasone enhances the efficacy of chemotherapeutic drugs in lung cancer by inhibiting Nrf2 signaling pathway. Cancer Lett 474:94–105

    Article  CAS  PubMed  Google Scholar 

  46. Choi E-J et al (2017) A clinical drug library screen identifies clobetasol propionate as an NRF2 inhibitor with potential therapeutic efficacy in KEAP1 mutant lung cancer. Oncogene 36:5285–5295

    Article  CAS  PubMed  Google Scholar 

  47. Zhou Y et al (2019) Digoxin sensitizes gemcitabine-resistant pancreatic cancer cells to gemcitabine via inhibiting Nrf2 signaling pathway. Redox Biol 22:101131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Laverdière I et al (2018) Leukemic stem cell signatures identify novel therapeutics targeting acute myeloid leukemia. Blood Cancer J 8:52

    Article  PubMed  PubMed Central  Google Scholar 

  49. Illangeswaran RSS et al (2023) Chemotherapeutic drugs elicit stemness and metabolic alteration to mediate acquired drug-resistant phenotype in acute myeloid leukemia cell lines. Leuk Res 128:107054

    Article  CAS  PubMed  Google Scholar 

  50. Ianevski A, He L, Aittokallio T, Tang J (2017) SynergyFinder: a web application for analyzing drug combination dose–response matrix data. Bioinformatics 33:2413–2415

    Article  PubMed  PubMed Central  Google Scholar 

  51. Karathedath S et al (2017) Role of NF-E2 related factor 2 (Nrf2) on chemotherapy resistance in acute myeloid leukemia (AML) and the effect of pharmacological inhibition of Nrf2. PLoS ONE 12:e0177227

    Article  PubMed  PubMed Central  Google Scholar 

  52. Singh A et al. (2006) Dysfunctional KEAP1-NRF2 interaction in non-small-cell lung cancer. PLoS Med 3

  53. Hoang DH et al (2022) Arsenic Trioxide and Venetoclax Synergize against AML Progenitors by ROS Induction and Inhibition of Nrf2 Activation. Int J Mol Sci 23:6568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ren D et al (2011) Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism. Proc Natl Acad Sci U S A 108:1433–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tang X et al (2011) Luteolin inhibits Nrf2 leading to negative regulation of the Nrf2/ARE pathway and sensitization of human lung carcinoma A549 cells to therapeutic drugs. Free Radic Biol Med 50:1599–1609

    Article  CAS  PubMed  Google Scholar 

  56. Kweon M-H, Adhami VM, Lee J-S, Mukhtar H (2006) Constitutive overexpression of Nrf2-dependent heme oxygenase-1 in A549 cells contributes to resistance to apoptosis induced by epigallocatechin 3-gallate. J Biol Chem 281:33761–33772

    Article  CAS  PubMed  Google Scholar 

  57. Rada P et al (2011) SCF/{beta}-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner. Mol Cell Biol 31:1121–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Almazari I et al (2012) Guggulsterone induces heme oxygenase-1 expression through activation of Nrf2 in human mammary epithelial cells: PTEN as a putative target. Carcinogenesis 33:368–376

    Article  CAS  PubMed  Google Scholar 

  59. Chowdhry S et al (2013) Nrf2 is controlled by two distinct β-TrCP recognition motifs in its Neh6 domain, one of which can be modulated by GSK-3 activity. Oncogene 32:3765–3781

    Article  CAS  PubMed  Google Scholar 

  60. Lien EC et al (2016) Glutathione biosynthesis is a metabolic vulnerability in PI(3)K/Akt-driven breast cancer. Nat Cell Biol 18:572–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kim N et al (2016) Cardiac glycosides display selective efficacy for STK11 mutant lung cancer. Scintific reports 6:29721

    Article  CAS  Google Scholar 

  62. Martinez FT et al (2019) Identification and characterization of Cardiac Glycosides as senolytic compounds. Nat Commun 10:4731

    Article  Google Scholar 

  63. Deng K et al (2019) Sodium chloride (NaCl) potentiates digoxin-induced anti-tumor activity in small cell lung cancer. Cancer Biol Ther 20:52–64

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study is supported by grants from the Department of Science and Technology, India: EMR/2017/003880 and CRG/2021/004281 to Dr. Poonkuzhali Balasubramanian.

RVS and PB are supported by Wellcome DBT India Alliance (IA/S/17/1/503118, IA/CPHS/18/1/503930, and IA/S/21/2/505932), respectively. DZP, SI, and BMR are supported by ICMR (Indian Council of Medical Research) SRF. SD and NKB are funded by the University Grants Commission and RTV by CSIR. We thank the staff of the animal facility, flow cytometry, and imaging facility of the Centre for Stem Cell Research, a unit of in Stem Bengaluru, CMC Campus, Vellore for their help.

Author information

Authors and Affiliations

Authors

Contributions

DZ, RSSI and BR designed the research, performed experiments, analyzed results, and wrote the manuscript.

RTV, SD and NB performed experiments and analyzed the results.

VM and SRV contributed to the analysis and review of the manuscript.

PB designed the research, performed experiments, analyzed results, wrote the manuscript, and procured funding.

All authors contributed to the article and approved the submitted version and revision.

Corresponding author

Correspondence to Poonkuzhali Balasubramanian.

Ethics declarations

Competing interest

None of the authors have any competing interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 1093 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jebanesan, D.Z.P., Illangeswaran, R.S.S., Rajamani, B.M. et al. Inhibition of NRF2 signaling overcomes acquired resistance to arsenic trioxide in FLT3-mutated Acute Myeloid Leukemia. Ann Hematol (2024). https://doi.org/10.1007/s00277-024-05742-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00277-024-05742-8

Keywords

Navigation