Skip to main content

Advertisement

Log in

Epigenetically dysregulated NOTCH-Delta-HES signaling cascade can serve as a subtype classifier for acute lymphoblastic leukemia

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

The NOTCH-Delta-HES signaling cascade is regarded as a double-edged sword owing to its dual tumor-suppressor and oncogenic roles, in different cellular environments. In the T-cells, it supports leukemogenesis by promoting differentiation while in B-cells, it controls leukemogenesis by inhibiting early differentiation/inducing growth arrest in the lead to apoptosis. The present study was undertaken to assess if this bi-faceted behavior of NOTCH family can be exploited as a diagnostic biomarker or subtype classifier of acute lymphoblastic leukemia (ALL). In this pursuit, expression of seven NOTCH cascade genes was analyzed in bone marrow (BM) biopsy and blood plasma (BP) of pediatric ALL patients using quantitative PCR (qPCR). Further, promoter DNA methylation status of the differentially expressed genes (DEGs) was assessed by methylation-specific qMSP and validated through bisulphite amplicon sequencing. Whereas hypermethylation of JAG1, DLL1, and HES-2, HES-4, and HES-5 was observed in all patients, NOTCH3 was found hypermethylated specifically in Pre-B ALL cases while DLL4 in Pre-T ALL cases. Aberrant DNA methylation strongly correlated with downregulated gene expression, which restored at complete remission stage as observed in “follow-up/post-treatment” subjects. The subtype-specific ROC curve analysis and Kaplan–Meier survival analysis predicted a clinically applicable diagnostic and prognostic potential of the panel. Moreover, the logistic regression model (Pre-B vs Pre-T ALL) was found to be the best-fitted model (McFadden’s R2 = 0.28, F1 measure = 0.99). Whether analyzed in BM-aspirates or blood plasma, the NOTCH epigenetic signatures displayed comparable results (p < 0.001), advocating the potential of NOTCH-Delta-HES cascade, as a subtype classifier, in minimally invasive diagnosis of ALL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available on appropriate request from the corresponding author, [SS].

Abbreviations

ALL :

Acute lymphoblastic leukemia

3′ UTR :

3′ Untranslated region

BCL2 :

B-cell leukemia/lymphoma 2

BM :

Bone marrow

BMA :

Bone marrow aspirate

BP :

Blood plasma

cDNA :

Complementary DNA

Cq :

Quantitative cycle

DAPK :

Death-associated protein kinase

DEGs :

Differentially expressed genes

DLL1 :

Delta-like ligand 1

DLL4 :

Delta-like ligand 4

DNA :

Deoxyribonucleic acid

FC :

Fold change (normalized)

GAPDH :

Glyceraldehyde-3-phosphate dehydrogenase

HC :

Healthy control

HES2 :

Hairy and enhancer of split 2

HES4 :

Hairy and enhancer of split 4

HES5 :

Hairy and enhancer of split 5

JAG1 :

Jagged 1

MI :

Methylation index

NICD :

NOTCH intracellular domain

NOTCH3 :

Neurogenic locus NOTCH homolog protein 3

NRT :

No reverse transcriptase

NTC :

No template control

qMSP :

Quantitative methylation specific PCR

qPCR :

Quantitative real-time PCR

RNA :

Ribonucleic acid

ROC :

Receiver operator characteristic

SMRT :

Silencing mediator of retinoic acid and thyroid hormone receptor

SNVs :

Single-nucleotide variants

TSGs :

Tumor suppressor genes

References

  1. Sasaki K, Jabbour E, Short NJ, Jain N, Ravandi F, Pui CH, Kantarjian H (2021) Acute lymphoblastic leukemia: a population-based study of outcome in the United States based on the surveillance, epidemiology, and end results (SEER) database, 1980–2017. Am J Hematol 96(6):650–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bigas-Salvans A, Rodríguez-Sevilla JJ, Espinosa Blay L, Gallardo Hernández F (2022) Recent advances in T-cell lymphoid neoplasms. Exp Hematol 106:3–18. https://doi.org/10.1016/j.exphem.2021.12.191

    Article  CAS  Google Scholar 

  3. Hefazi M, Litzow MR (2018) Recent advances in the biology and treatment of B-cell acute lymphoblastic leukemia. Blood Lymphat Cancer: Targets Ther 8:47

    Article  CAS  Google Scholar 

  4. Zhang J, Mullighan CG, Harvey RC, Wu G, Chen X, Edmonson M, Buetow KH, Carroll WL, Chen I-M, Devidas M (2011) Key pathways are frequently mutated in high-risk childhood acute lymphoblastic leukemia: a report from the Children’s Oncology Group. Blood 118(11):3080–3087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Passaro D, Quang CT, Ghysdael J (2016) Microenvironmental cues for T-cell acute lymphoblastic leukemia development. Immunol Rev 271(1):156–172

    Article  CAS  PubMed  Google Scholar 

  6. Chiarini F, Paganelli F, Martelli AM, Evangelisti C (2020) The role played by Wnt/β-catenin signaling pathway in acute lymphoblastic leukemia. Int J Mol Sci 21(3):1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tosello V, Ferrando AA (2013) The NOTCH signaling pathway: Role in the pathogenesis of T-cell acute lymphoblastic leukemia and implication for therapy. Ther Adv Hematol 4(3):199–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Duncan AW, Rattis FM, DiMascio LN, Congdon KL, Pazianos G, Zhao C, Yoon K, Cook JM, Willert K, Gaiano N (2005) Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nature Immunol 6(3):314–322

    Article  CAS  Google Scholar 

  9. Allman D, Aster JC, Pear WS (2002) Notch signaling in hematopoiesis and early lymphocyte development. Immunolo Rev 187(1):75–86

    Article  CAS  Google Scholar 

  10. Garis M, Garrett-Sinha LA (2021) Notch signaling in B cell immune responses. Front Immunol 11:609324. https://doi.org/10.3389/fimmu.2020.609324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pui JC, Allman D, Xu L, DeRocco S, Karnell FG, Bakkour S, Lee JY, Kadesch T, Hardy RR, Aster JC, Pear WS (1999) Notch1 expression in early lymphopoiesis influences B versus T lineage determination. Immunity 11(3):299–308. https://doi.org/10.1016/s1074-7613(00)80105-3

    Article  CAS  PubMed  Google Scholar 

  12. Pagie S, Gérard N, Charreau B (2018) Notch signaling triggered via the ligand DLL4 impedes M2 macrophage differentiation and promotes their apoptosis. Cell Commun Signal 16(1):1–12

    Article  Google Scholar 

  13. Kakuda S, LoPilato RK, Ito A, Haltiwanger RS (2020) Canonical Notch ligands and Fringes have distinct effects on NOTCH1 and NOTCH2. J Biol Chem 295(43):14710–14722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Györy I, Boller S, Nechanitzky R, Mandel E, Pott S, Liu E, Grosschedl R (2012) Transcription factor Ebf1 regulates differentiation stage-specific signaling, proliferation, and survival of B cells. Genes Dev 26(7):668–682. https://doi.org/10.1101/gad.187328.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bayer M, Boller S, Ramamoothy S, Zolotarev N, Cauchy P, Iwanami N, Mittler G, Boehm T, Grosschedl R (2022) Tnpo3 enables EBF1 function in conditions of antagonistic Notch signaling. Genes Dev 36(15–16):901–915. https://doi.org/10.1101/gad.349696.122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Maeda T, Merghoub T, Hobbs RM, Dong L, Maeda M, Zakrzewski J, van den Brink MR, Zelent A, Shigematsu H, Akashi K, Teruya-Feldstein J, Cattoretti G, Pandolfi PP (2007) Regulation of B versus T lymphoid lineage fate decision by the proto-oncogene LRF. Science 316(5826):860–866. https://doi.org/10.1126/science.1140881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bain G, Maandag EC, Izon DJ, Amsen D, Kruisbeek AM, Weintraub BC, Krop I, Schlissel MS, Feeney AJ, van Roon M et al (1994) E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements. Cell 79(5):885–892. https://doi.org/10.1016/0092-8674(94)90077-9

    Article  CAS  PubMed  Google Scholar 

  18. Grabher C, von Boehmer H, Look AT (2006) Notch 1 activation in the molecular pathogenesis of T-cell acute lymphoblastic leukaemia. Nat Rev Cancer 6(5):347–359

    Article  CAS  PubMed  Google Scholar 

  19. D’Altri T, Gonzalez J, Aifantis I, Espinosa L, Bigas A (2011) Hes1 expression and CYLD repression are essential events downstream of Notch1 in T-cell leukemia. Cell Cycle 10(7):1031–1036

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hoofd C, Giambra V, Weng AP (2018) Notch signaling in T-cell acute lymphoblastic leukemia and other hematologic malignancies. Targeting Notch in Cancer, Springer, New York, NY, pp 199–225. https://doi.org/10.1007/978-1-4939-8859-4_8

  21. Lobry C, Oh P, Mansour MR, Look AT, Aifantis I (2014) Notch signaling: switching an oncogene to a tumor suppressor. Blood 123(16):2451–2459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang Z, Li Y, Kong D, Sarkar HF (2010) The role of Notch signaling pathway in epithelial-mesenchymal transition (EMT) during development and tumor aggressiveness. Curr Drug Targets 11(6):745–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sanda T, Li X, Gutierrez A, Ahn Y, Neuberg DS, O’Neil J, Strack PR, Winter CG, Winter SS, Larson RS (2010) Interconnecting molecular pathways in the pathogenesis and drug sensitivity of T-cell acute lymphoblastic leukemia. Blood 115(9):1735–1745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Koch U, Radtke F (2007) Notch and cancer: a double-edged sword. Cell Mol Life Sci 64(21):2746–2762

    Article  CAS  PubMed  Google Scholar 

  25. Wilson CB, Makar KW, Shnyreva M, Fitzpatrick DR (2005) DNA methylation and the expanding epigenetics of T cell lineage commitment. In: Seminars Immunol 2:105–119

    Google Scholar 

  26. Esteller M (2005) Aberrant DNA methylation as a cancer-inducing mechanism. Annu Rev Pharmacol Toxicol 45:629–656

    Article  CAS  PubMed  Google Scholar 

  27. Mondal P, Natesh J, Penta D, Meeran SM (2020) Progress and promises of epigenetic drugs and epigenetic diets in cancer prevention and therapy: a clinical update. Semin Cancer Biol 83:503–522

    Article  PubMed  Google Scholar 

  28. Marchal C, Miotto B (2015) Emerging concept in DNA methylation: role of transcription factors in shaping DNA methylation patterns. J Cell Physiol 230(4):743–751

    Article  CAS  PubMed  Google Scholar 

  29. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  30. Hussan SS, Maqsood N, Wang Q, Tao S, Sadaf S (2021) A panel of epigenetically dysregulated Wnt signaling pathway genes for non-invasive diagnosis of pediatric acute lymphoblastic leukemia. Cancer Biomark 32(4):459–470

    Article  CAS  PubMed  Google Scholar 

  31. Sachan N, Sharma V, Mutsuddi M, Mukherjee A (2023) Notch signalling: multifaceted role in development and disease. FEBS J. 11. https://doi.org/10.1111/febs.16815

  32. Zweidler-McKay PA (2008) Notch signaling in pediatric malignancies. Curr Oncol Rep 10:459–468. https://doi.org/10.1007/s11912-008-0071-2

    Article  CAS  PubMed  Google Scholar 

  33. Ferrandino F, Grazioli P, Bellavia D, Campese AF, Screpanti I, Felli MP (2018) Notch and NF-κB: Coach and players of regulatory T-cell response in cancer. Front Immunol 9:2165. https://doi.org/10.3389/fimmu.2018.02165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jundt F, Schwarzer R, Dorken B (2008) Notch signaling in leukemias and lymphomas. Curr Mol Med 8(1):51–59

    Article  CAS  PubMed  Google Scholar 

  35. Kuang S-Q, Fang Z, Zweidler-McKay PA, Yang H, Wei Y, Gonzalez-Cervantes EA, Boumber Y, Garcia-Manero G (2013) Epigenetic inactivation of Notch-Hes pathway in human B-cell acute lymphoblastic leukemia. Plos One 8(4):e61807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kit AH, Nielsen HM, Tost J (2012) DNA methylation based biomarkers: practical considerations and applications. Biochimie 94(11):2314–2337

    Article  Google Scholar 

  37. Alhosin M, Razvi SSI, Sheikh RA, Khan JA, Zamzami MA, Choudhry H (2020) Thymoquinone and difluoromethylornithine (DFMO) synergistically induce apoptosis of human acute T lymphoblastic leukemia jurkat cells through the modulation of epigenetic pathways. Technol Cancer Res Treat 19:1533033820947489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Burke MJ, Kostadinov R, Sposto R, Gore L, Kelley SM, Rabik C, Trepel JB, Lee M-J, Yuno A, Lee S (2020) Decitabine and vorinostat with chemotherapy in relapsed pediatric acute lymphoblastic leukemia: a TACL pilot study. Clin Can Res 26(10):2297–2307

    Article  CAS  Google Scholar 

  39. Bellavia D, Checquolo S, Palermo R, Screpanti I (2018) The Notch3 receptor and its intracellular signaling-dependent oncogenic mechanisms. In: Borggrefe T, Giaimo B, (eds) Molecular mechanisms of Notch signaling. Advances in Experimental Medicine and Biology, vol 1066. Springer, Cham. pp 205-222. https://doi.org/10.1007/978-3-319-89512-3_10.

  40. Sen P, Ghosh SS (2023) The intricate Notch signaling dynamics in therapeutic realms of cancer. ACS Pharmacol Transl Sci 6(5):651–670. https://doi.org/10.1021/acsptsci.2c00239

    Article  CAS  PubMed  Google Scholar 

  41. Vigolo M, Urech C, Lamy S, Monticone G, Zabaleta J, Hossain F, Wyczechowska D, Del Valle L, O’Regan RM, Miele L, Lehal R, Majumder S (2023) The efficacy of CB-103, a first-in-class transcriptional Notch inhibitor, in preclinical models of breast cancer. Cancers (Basel) 15(15):3957. https://doi.org/10.3390/cancers15153957

    Article  CAS  PubMed  Google Scholar 

  42. Bernasconi-Elias P, Hu T, Jenkins D, Firestone B, Gans S, Kurth E, Capodieci P, Deplazes-Lauber J, Petropoulos K, Thiel P (2016) Characterization of activating mutations of NOTCH3 in T-cell acute lymphoblastic leukemia and anti-leukemic activity of NOTCH3 inhibitory antibodies. Oncogene 35(47):6077–6086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhdanovskaya N, Firrincieli M, Lazzari S, Pace E, Scribani Rossi P, Felli MP, Talora C, Screpanti I, Palermo R (2021) Targeting Notch to maximize chemotherapeutic benefits: rationale, advanced strategies, and future perspectives. Cancers (Basel) 13(20):5106. https://doi.org/10.3390/cancers13205106

    Article  CAS  PubMed  Google Scholar 

  44. Huang Yh, Wan CL, Hp D, Xue SL (2023) Targeted therapy and immunotherapy for T cell acute lymphoblastic leukemia/lymphoma. Ann Hematol 102:2001–2013. https://doi.org/10.1007/s00277-023-05286-3

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to all study subjects and guardians who participated in this study and voluntarily gave their BM and/or BP samples. Thanks are due to the paramedical staff of the Leukemia Center, Children’s Hospital Lahore, for facilitation in sample collections. We are also thankful to Dr. Tahir Shamsi (Late) for providing the bone marrow samples of healthy donors.

Funding

The work was supported by a grant from PakPat World Intellectual Property Protection Services (Grant No. 23974/2023) and partially by the University of the Punjab, Lahore, Pakistan.

Author information

Authors and Affiliations

Authors

Contributions

SSH performed experiments and acquired, analyzed, and interpreted all the datasets in the present study. MSA, MA, and MF facilitated sample collection, cataloging, and setting-up the runs. SSH and MSA confirmed authenticity of all the raw data and wrote the draft manuscript. Project conception, study design, research supervision, and critical revision of manuscript for important intellectual contents were done by SS. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Saima Sadaf.

Ethics declarations

Ethics approval and consent to participate

All experiments were performed according to the Declaration of Helsinki. Study design was approved by the University Advanced Studies and Research Board besides approval Ethics Committee (Ref. 268/FIMS-22–06-2022).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• NOTCH-Delta-HES signaling cascade, a double edge sword, plays both tumor suppressor and oncogenic roles.

• Distinct expression patterns of NOTCH pathway members in Pre-B ALL and Pre-T-ALL subjects are derived by differential promoter DNA methylation.

• Dysregulated expression of NOTCH3 and DLL4 can serve as an ALL subtype classifier in bone marrow and liquid-biopsy samples.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 334 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussan, S.S., Ali, M.S., Fatima, M. et al. Epigenetically dysregulated NOTCH-Delta-HES signaling cascade can serve as a subtype classifier for acute lymphoblastic leukemia. Ann Hematol 103, 511–523 (2024). https://doi.org/10.1007/s00277-023-05515-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-023-05515-9

Keywords

Navigation