Skip to main content

Clinical and prognostic role of sarcopenia based on masticatory muscle index on MR images in patients with extranodal natural killer/T cell lymphoma, nasal type


Sarcopenia is known to be associated with an increased risk of adverse outcomes in a variety of malignancies, but its impact in extranodal natural killer/T cell lymphoma, nasal type (ENKTL-NT) is unknown. The aim of this study was to explore the prognostic relevance of sarcopenia defined by MRI-based masticatory muscle index in ENKTL-NT patients. A total of 112 patients with newly diagnosed ENKTL-NT who underwent cranial magnetic resonance imaging (MRI) were enrolled. The masticatory skeletal muscle index (M-SMI) was measured based on T2-weighted MR images and sarcopenia was defined by M-SMI<5.5 cm2/ m2. The median M-SMI was 5.47 (4.91–5.96) cm2/m2; 58 were identified with sarcopenia in this cohort. On multivariate analyses, sarcopenia was the only independently risk factor predicting overall survival (HR, 4.590; 95% CI, 1.657–12.715; p = 0.003), progression-free survival (HR, 3.048; 95% CI, 1.515–6.130; p = 0.002), and treatment response (HR, 0.112; 95% CI, 0.042–0.301; p < 0.001). In addition, we found that integrating sarcopenia into prognostic indices could improve the discriminative power of the corresponding original model. Stratification analysis showed that sarcopenia was able to further identify survival differences in patients that could not be distinguished by prognostic models. In summary, our study suggests that sarcopenia defined by MRI-based M-SMI represents a new and routinely applicable prognostic indicator of clinical outcome or predictor of treatment response in ENKTL-NT patients, and may aid in risk stratification and treatment decisions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

The datasets used and analyzed in the current study are available from the corresponding authors.



extranodal NK/T cell lymphoma, nasal type


non-Hodgkin’s lymphoma


Epstein-Barr virus


magnetic resonance imaging

CT :

computed tomography


masticatory muscle index


progression-free survival

OS :

overall survival


International Prognostic Index


Korean Prognostic Index


Prognostic Index of Natural Killer Lymphoma


Nomogram-revised Risk Index


skeletal muscle index

L3 :

third lumbar vertebra


cross-sectional area


lactate dehydrogenase


Eastern Cooperative Oncology Group performance status


regional lymph node


distant lymph node


body mass index

OR :

odds ratio


  1. Zhou X, Sun X, Zhao W et al (2019) Prognostic significance of peripheral blood absolute lymphocyte count and derived neutrophil to lymphocyte ratio in patients with newly diagnosed extranodal natural killer/T-cell lymphoma. Cancer Manag Res 11:4243–4254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. van Doesum JA, Niezink A, Huls GA et al (2021) Extranodal natural killer/T-cell lymphoma, nasal type: diagnosis and treatment. Hemasphere 5:e523

    Article  PubMed  PubMed Central  Google Scholar 

  3. Di QS, Xu T, Song Y et al (2020) High C-reactive protein to albumin ratio predicts inferior clinical outcomes in extranodal natural killer T-cell lymphoma. Dose Response 18:710600640

    Article  Google Scholar 

  4. Li H, Shao G, Zhang Y et al (2021) Nomograms based on SUVmax of (18)F-FDG PET/CT and clinical parameters for predicting progression-free and overall survival in patients with newly diagnosed extranodal natural killer/T-cell lymphoma. Cancer Imaging 21:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sanchez-Romero C, Bologna-Molina R, Paes DAO et al (2021) Extranodal NK/T cell lymphoma, nasal type: an updated overview. Crit Rev Oncol Hematol 159:103237

    Article  PubMed  Google Scholar 

  6. Kwong YL, Kim WS, Lim ST et al (2012) SMILE for natural killer/T-cell lymphoma: analysis of safety and efficacy from the Asia Lymphoma Study Group. Blood 120:2973–2980

    Article  CAS  PubMed  Google Scholar 

  7. Yamaguchi M, Suzuki R, Oguchi M et al (2017) Treatments and outcomes of patients with extranodal natural killer/T-cell lymphoma diagnosed between 2000 and 2013: a cooperative study in Japan. J Clin Oncol 35:32–39

    Article  PubMed  Google Scholar 

  8. Yang Y, Zhu Y, Cao JZ et al (2015) Risk-adapted therapy for early-stage extranodal nasal-type NK/T-cell lymphoma: analysis from a multicenter study. Blood 126(1424–1432):1517

    CAS  PubMed  Google Scholar 

  9. Chen SY, Yang Y, Qi SN et al (2021) Validation of nomogram-revised risk index and comparison with other models for extranodal nasal-type NK/T-cell lymphoma in the modern chemotherapy era: indication for prognostication and clinical decision-making. Leukemia 35:130–142

    Article  PubMed  Google Scholar 

  10. Dong G, Liu X, Wang L et al (2022) Genomic profiling identifies distinct genetic subtypes in extra-nodal natural killer/T-cell lymphoma. Leukemia 36:2064–2075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xiong J, Cui BW, Wang N et al (2020) Genomic and transcriptomic characterization of natural killer T cell lymphoma. Cancer Cell 37:403–419

    Article  CAS  PubMed  Google Scholar 

  12. Hu WH, Chang CD, Liu TT et al (2021) Association of sarcopenia and expression of interleukin-23 in colorectal cancer survival. Clin Nutr 40:5322–5326

    Article  CAS  PubMed  Google Scholar 

  13. Lee J, Liu SH, Dai KY et al (2021) Sarcopenia and systemic inflammation synergistically impact survival in oral cavity cancer. Laryngoscope 131:E1530–E1538

    Article  CAS  PubMed  Google Scholar 

  14. Srpcic M, Jordan T, Popuri K et al (2020) Sarcopenia and myosteatosis at presentation adversely affect survival after esophagectomy for esophageal cancer. Radiol Oncol 54:237–246

    Article  PubMed  PubMed Central  Google Scholar 

  15. Surov A, Wienke A (2021) Sarcopenia predicts overall survival in patients with malignant hematological diseases: a meta-analysis. Clin Nutr 40:1155–1160

    Article  PubMed  Google Scholar 

  16. Zilioli VR, Albano D, Arcari A et al (2021) Clinical and prognostic role of sarcopenia in elderly patients with classical Hodgkin lymphoma: a multicentre experience. J Cachexia Sarcopenia Muscle 12:1042–1055

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tagliafico AS, Bignotti B, Torri L et al (2022) Sarcopenia: how to measure, when and why. Radiol Med 127:228–237

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cruz-Jentoft AJ, Bahat G, Bauer J et al (2019) Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 48:16–31

    Article  PubMed  Google Scholar 

  19. Pamoukdjian F, Bouillet T, Levy V et al (2018) Prevalence and predictive value of pre-therapeutic sarcopenia in cancer patients: a systematic review. Clin Nutr 37:1101–1113

    Article  PubMed  Google Scholar 

  20. Beaudart C, McCloskey E, Bruyere O et al (2016) Sarcopenia in daily practice: assessment and management. Bmc Geriatr 16:170

    Article  PubMed  PubMed Central  Google Scholar 

  21. Xu Z, Yang D, Luo J et al (2023) Diagnosis of sarcopenia using the L3 skeletal muscle index estimated from the L1 skeletal muscle index on MR images in patients with cirrhosis. J Magn Reson Imaging

  22. Faron A, Sprinkart AM, Kuetting D et al (2020) Body composition analysis using CT and MRI: intra-individual intermodal comparison of muscle mass and myosteatosis. Sci Rep 10:11765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zaffina C, Wyttenbach R, Pagnamenta A et al (2022) Body composition assessment: comparison of quantitative values between magnetic resonance imaging and computed tomography. Quant Imaging Med Surg 12:1450–1466

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zwart AT, Becker JN, Lamers MJ et al (2021) Skeletal muscle mass and sarcopenia can be determined with 1.5-T and 3-T neck MRI scans, in the event that no neck CT scan is performed. Eur Radiol 31:4053–4062

    Article  PubMed  Google Scholar 

  25. Mitsiopoulos N, Baumgartner RN, Heymsfield SB et al (1998) Cadaver validation of skeletal muscle measurement by magnetic resonance imaging and computerized tomography. J Appl Physiol 85:115–122

    Article  CAS  PubMed  Google Scholar 

  26. Chargi N, Ansari E, Huiskamp L et al (2019) Agreement between skeletal muscle mass measurements using computed tomography imaging and magnetic resonance imaging in head and neck cancer patients. Oral Oncol 99:104341

    Article  CAS  PubMed  Google Scholar 

  27. Khil EK, Choi JA, Hwang E et al (2020) Paraspinal back muscles in asymptomatic volunteers: quantitative and qualitative analysis using computed tomography (CT) and magnetic resonance imaging (MRI). Bmc Musculoskelet Disord 21:403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chang SW, Tsai YH, Hsu CM et al (2021) Masticatory muscle index for indicating skeletal muscle mass in patients with head and neck cancer. PLoS One 16:e251455

    Google Scholar 

  29. Ganju RG, Morse R, Hoover A et al (2019) The impact of sarcopenia on tolerance of radiation and outcome in patients with head and neck cancer receiving chemoradiation. Radiother Oncol 137:117–124

    Article  PubMed  Google Scholar 

  30. Pedersen LM, Klausen TW, Davidsen UH et al (2005) Early changes in serum IL-6 and VEGF levels predict clinical outcome following first-line therapy in aggressive non-Hodgkin’s lymphoma. Ann Hematol 84:510–516

    Article  CAS  PubMed  Google Scholar 

  31. Xie G, Jin H, Mikhail H et al (2023) Autophagy in sarcopenia: possible mechanisms and novel therapies. Biomed Pharmacother 165:115147

  32. Mancuso S, Mattana M, Santoro M et al (2022) Host-related factors and cancer: Malnutrition and non-Hodgkin lymphoma. Hematol Oncol 40:320–331

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sinelnikov A, Qu C, Fetzer DT et al (2016) Measurement of skeletal muscle area: comparison of CT and MR imaging. Eur J Radiol 85:1716–1721

    Article  PubMed  Google Scholar 

  34. Chianca V, Albano D, Messina C et al (2022) Sarcopenia: imaging assessment and clinical application. Abdom Radiol (Ny) 47:3205–3216

    Article  PubMed  Google Scholar 

  35. Schlaeger S, Weidlich D, Klupp E et al (2020) Water T(2) mapping in fatty infiltrated thigh muscles of patients with neuromuscular diseases using a T(2) -prepared 3D turbo spin echo with SPAIR. J Magn Reson Imaging 51:1727–1736

    Article  PubMed  Google Scholar 

  36. Shen W, Punyanitya M, Wang Z et al (2004) Total body skeletal muscle and adipose tissue volumes: estimation from a single abdominal cross-sectional image. J Appl Physiol 97:2333–2338

    Article  PubMed  Google Scholar 

  37. Vangelov B, Bauer J, Kotevski D et al (2022) The use of alternate vertebral levels to L3 in computed tomography scans for skeletal muscle mass evaluation and sarcopenia assessment in patients with cancer: a systematic review. Br J Nutr 127:722–735

    Article  CAS  PubMed  Google Scholar 

  38. Jimenez-Gutierrez GE, Martinez-Gomez LE, Martinez-Armenta C et al (2022) Molecular mechanisms of inflammation in sarcopenia: diagnosis and therapeutic update. Cells 11:2359

  39. Chim CS, Ma SY, Au WY et al (2004) Primary nasal natural killer cell lymphoma: long-term treatment outcome and relationship with the International Prognostic Index. Blood 103:216–221

    Article  CAS  PubMed  Google Scholar 

  40. Kim SJ, Yoon DH, Jaccard A et al (2016) A prognostic index for natural killer cell lymphoma after non-anthracycline-based treatment: a multicentre, retrospective analysis. Lancet Oncol 17:389–400

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations



TZX contributed to conception, design, and manuscript preparation. YL conducted analyzed data and revised the manuscript. YXL and BN prepared figures and tables. YCW and HJW provided the study design and supervised the study. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Huijing Wu or Yongchang Wei.

Ethics declarations

Ethics approval

The study protocol was approved by the institutional review boards of Zhongnan Hospital of Wuhan University and Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology in accordance with the Helsinki Declaration.

Patient consent

Informed consent was waived due to the retrospective nature of the present study, and data of the participants have been anonymized.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 30 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, T., Li, Y., Liu, Y. et al. Clinical and prognostic role of sarcopenia based on masticatory muscle index on MR images in patients with extranodal natural killer/T cell lymphoma, nasal type. Ann Hematol 102, 3521–3532 (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: