Skip to main content

Advertisement

Log in

COVID-19 and β-thalassemia: in lieu of evidence and vague nexus

  • Review Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Coronavirus disease 19 (COVID-19) is an infectious disease caused by severe acute respiratory coronavirus 2 (SARS-CoV-2) causing acute systemic disorders and multi-organ damage. β-thalassemia (β-T) is an autosomal recessive disorder leading to the development of anemia. β-T may lead to complications such as immunological disorders, iron overload, oxidative stress, and endocrinopathy. β-T and associated complications may increase the risk of SARS-CoV-2, as inflammatory disturbances and oxidative stress disorders are linked with COVID-19. Therefore, the objective of the present review was to elucidate the potential link between β-T and COVID-19 regarding the underlying comorbidities. The present review showed that most of the β-T patients with COVID-19 revealed mild to moderate clinical features, and β-T may not be linked with Covid-19 severity. Though patients with transfusion-dependent β-T (TDT) develop less COVID-19 severity compared to non-transfusion-depend β-T(NTDT), preclinical and clinical studies are recommended in this regard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Al-Kuraishy HM, Al-Naimi MS, Lungnier CM, Al-Gareeb AI (2020) Macrolides and COVID-19: an optimum premise. Biomedical and Biotechnology Research Journal 4(3):189

    Article  Google Scholar 

  2. Al-Kuraishy HM, Hussien NR, Al-Naimi MS, Al-Buhadily AK, Al-Gareeb AI, Lungnier C (2020) Is ivermectin–azithromycin combination the next step for COVID-19? Biomedical and Biotechnology Research Journal 4(5):101

    Article  Google Scholar 

  3. Al-Kuraishy HM, Hussien NR, Al-Naimi MS, Al-Buhadily AK, Al-Gareeb AI, Lungnier C (2020) Renin–angiotensin system and fibrinolytic pathway in COVID-19: one-way skepticism. Biomed Biotechnol Res J 4(5):33

    Article  Google Scholar 

  4. Bank S, De SK, Bankura B, Maiti S, Das M, Khan AG (2021) ACE/ACE2 balance might be instrumental to explain the certain comorbidities leading to severe COVID-19 cases. Biosci Rep 41(2):BSR20202014

  5. Feikin DR, Abu-Raddad LJ, Andrews N, Davies M-A, Higdon MM, Orenstein WA et al (2022) Assessing vaccine effectiveness against severe COVID-19 disease caused by omicron variant. Report from a meeting of the World Health Organization. Vaccine 40(26):3516–3527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Anjorin AA, Abioye AI, Asowata OE, Soipe A, Kazeem MI, Adesanya IO et al (2021) Comorbidities and the COVID-19 pandemic dynamics in Africa. Tropical Med Int Health 26(1):2–13

    Article  CAS  Google Scholar 

  7. Al-Kuraishy HM, Al-Gareeb AI (2017) Comparison of deferasirox and deferoxamine effects on iron overload and immunological changes in patients with blood transfusion-dependent β-thalassemia. Asian J Transfus Sci 11(1):13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Weatherall DJ (2012) The definition and epidemiology of non-transfusion-dependent thalassemia. Blood Rev 26:S3–S6

    Article  PubMed  Google Scholar 

  9. Amjad F, Fatima T, Fayyaz T, Khan MA, Qadeer MI (2020) Novel genetic therapeutic approaches for modulating the severity of β-thalassemia. Biomed Rep 13(5):1

    Article  Google Scholar 

  10. Needs T, Gonzalez-Mosquera LF, Lynch DT (2018) Beta thalassemia. 2022. eng.

  11. Alaithan MA, AbdulAzeez S, Borgio JF (2018) A comprehensive review of the prevalence of beta globin gene variations and the co-inheritance of related gene variants in Saudi Arabians with beta-thalassemia. Saudi Med J 39(4):329

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pantaleo A, Ferru E, Carta F, Valente E, Pippia P, Turrini F (2012) Effect of heterozygous beta thalassemia on the phosphorylative response to Plasmodium falciparum infection. J Proteome 76:251–258

    Article  CAS  Google Scholar 

  13. Yasmeen H, Hasnain S (2019) Epidemiology and risk factors of transfusion transmitted infections in thalassemia major: a multicenter study in Pakistan. Hematol Transfus Cell Ther 41:316–323

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tsai T-A, Tsai C-K, Yang Y-H, Lee Z-M, Sheen J-M, Lee Y-C et al (2020) Higher hospitalization rate for lower airway infection in transfusion-naïve thalassemia children. Front Pediatr 8:574014

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bonifazi F, Conte R, Baiardi P, Bonifazi D, Felisi M, Giordano P et al (2017) Pattern of complications and burden of disease in patients affected by beta thalassemia major. Curr Med Res Opin 33(8):1525–1533

    Article  PubMed  Google Scholar 

  16. De Sanctis V, Canatan D, Corrons JLV, Karimi M, Daar S, Kattamis C et al (2020) A comprehensive update of ICET-A network on COVID-19 in thalassemias: what we know and where we stand. Acta Bio Medica: Atenei Parmensis 91(3):e2020026

    PubMed  Google Scholar 

  17. Gluba-Brzózka A, Franczyk B, Rysz-Górzyńska M, Rokicki R, Koziarska-Rościszewska M, Rysz J (2021) Pathomechanisms of immunological disturbances in β-thalassemia. Int J Mol Sci 22(18):9677

    Article  PubMed  PubMed Central  Google Scholar 

  18. Siwaponanan P, Siegers JY, Ghazali R, Ng T, McColl B, Ng GZ-W et al (2017) Reduced PU. 1 expression underlies aberrant neutrophil maturation and function in β-thalassemia mice and patients. Blood, The Journal of the American Society of. Hematology 129(23):3087–3099

    CAS  Google Scholar 

  19. Buttari B, Profumo E, Caprari P, Massimi S, Sorrentino F, Maffei L et al (2020) Phenotypical and functional abnormalities of circulating neutrophils in patients with β-thalassemia. Ann Hematol 99:2265–2277

    Article  CAS  PubMed  Google Scholar 

  20. Ismabil P (2017) Biochemical and kinetic study on serum adenosine deaminase enzyme in P thalassaemia. Ibn AL-Haitham J Pure Appl Sci 21(2):110–17E

    Google Scholar 

  21. Qin F, Shi L, Li Q, Zhang Z, Liu L, Li J et al (2019) Immune recovery after in vivo T-cell depletion myeloablative conditioning hematopoietic stem cell transplantation in severe beta-thalassemia children. Eur J Haematol 103(4):342–350

    Article  CAS  PubMed  Google Scholar 

  22. Mahmoud S, Mohamed G, Hakeem G, Higazi A, Nafady A, Farag N et al (2017) Comparison of the immunity status in-between children with [beta]-thalassaemia major receiving different treatment modalities: a single Egyptian district study. Immunome Res 13(1):1

    Google Scholar 

  23. ChD A (2014) Immunologic abnormalities in β-thalassemia. J Blood Disorders Transf 5(224):2

    Google Scholar 

  24. Voskaridou E, Terpos E (2004) New insights into the pathophysiology and management of osteoporosis in patients with beta thalassaemia. Br J Haematol 127(2):127–139

    Article  CAS  PubMed  Google Scholar 

  25. jyA Yilmaz BA, Demiralp E (2001) Increased plasma levels of interleukin-6 and interleukin-8 in ß-thalassaemia major. Haematologia 31(3):237–244

    Article  Google Scholar 

  26. Stolt C, Schmidt IH, Sayfart Y, Steinmetz I, Bast A (2016) Heme oxygenase-1 and carbon monoxide promote Burkholderia pseudomallei infection. J Immunol 197(3):834–846

    Article  CAS  PubMed  Google Scholar 

  27. Zhang B, Zhou X, Zhu C, Song Y, Feng F, Qiu Y et al (2020) Immune phenotyping based on the neutrophil-to-lymphocyte ratio and IgG level predicts disease severity and outcome for patients with COVID-19. Front Mol Biosci 7:157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ehsanipour F, Faranoush P, Foroughi-Gilvaee MR, Sadighnia N, Fallahpour M, Motamedi M et al (2022) Evaluation of immune system in patients with transfusion-dependent beta-thalassemia in Rasoul-e-Akram Hospital in 2021: A descriptive cross-sectional study. Health Sci Rep 5(6):e871

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yang Y, Shen C, Li J, Yuan J, Wei J, Huang F et al (2020) Plasma IP-10 and MCP-3 levels are highly associated with disease severity and predict the progression of COVID-19. J Allergy Clin Immunol 146(1):119–27.e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Al-Hakeim HK, Najm AH, Al-Dujaili AH, Maes M (2020) Major depression in children with transfusion-dependent thalassemia is strongly associated with the combined effects of blood transfusion rate, iron overload, and increased pro-inflammatory cytokines. Neurotox Res 38:228–241

    Article  CAS  PubMed  Google Scholar 

  31. Fara A, Mitrev Z, Rosalia RA, Assas BM (2020) Cytokine storm and COVID-19: a chronicle of pro-inflammatory cytokines. Open Biol 10(9):200160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Karimi M, Haghpanah S, Azarkeivan A, Zahedi Z, Zarei T, Akhavan Tavakoli M et al (2020) Prevalence and mortality due to outbreak of novel coronavirus disease (COVID-19) in β-Thalassemias: the Nationwide Iranian experience. Available at SSRN 3605175

  33. Karimi M, De Sanctis V (2020) Implications of SARSr-CoV 2 infection in thalassemias: do patients fall into the “high clinical risk” category? Acta Bio Medica: Atenei Parmensis 91(2):50

    CAS  PubMed  Google Scholar 

  34. Russell CD, Millar JE, Baillie JK (2020) Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet 395(10223):473–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Longo F, Gianesin B, Voi V, Motta I, Pinto VM, Piolatto A et al (2022) Italian patients with hemoglobinopathies exhibit a 5-fold increase in age-standardized lethality due to SARS-CoV-2 infection. Am J Hematol 97(2):E75–EE8

    Article  CAS  PubMed  Google Scholar 

  36. Sotiriou S, Samara AA, Vamvakopoulou D, Vamvakopoulos K-O, Sidiropoulos A, Vamvakopoulos N et al (2021) Susceptibility of β-thalassemia heterozygotes to COVID-19. J Clin Med 10(16):3645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sotiriou S, Samara AA, Lachanas KE, Vamvakopoulou D, Vamvakopoulos K-O, Vamvakopoulos N et al (2022) Vulnerability of β-thalassemia heterozygotes to COVID-19: results from a cohort study. J Pers Med 12(3):352

    Article  PubMed  PubMed Central  Google Scholar 

  38. Motta I, De Amicis MM, Pinto VM, Balocco M, Longo F, Bonetti F et al (2020) SARS-CoV-2 infection in beta thalassemia: preliminary data from the Italian experience. Am J Hematol 95(8):E198–E199. https://doi.org/10.1002/ajh.25840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pinto VM, Derchi GE, Bacigalupo L, Pontali E, Forni GL (2020) COVID-19 in a patient with β-thalassemia major and severe pulmonary arterial hypertension. Hemoglobin 44(3):218–220

    Article  CAS  PubMed  Google Scholar 

  40. Drouin E (2020) Beta-thalassemia may protect against COVID 19. Med Hypotheses 143:110014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. DeMartino AW, Rose JJ, Amdahl MB, Dent MR, Shah FA, Bain W et al (2020) No evidence of hemoglobin damage by SARS-CoV-2 infection. Haematologica 105(12):2769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shokrgozar N, Amirian N, Ranjbaran R, Bazrafshan A, Sharifzadeh S (2020) Evaluation of regulatory T cells frequency and FoxP3/GDF-15 gene expression in β-thalassemia major patients with and without alloantibody; correlation with serum ferritin and folate levels. Ann Hematol 99:421–429

    Article  CAS  PubMed  Google Scholar 

  43. Scarpa R, Costa L, Del Puente A, Caso F (2020) Role of thymopoiesis and inflamm-aging in COVID-19 phenotype. Pediatr Neonatol 61(3):364–365

    Article  PubMed  PubMed Central  Google Scholar 

  44. Liu Y, Qi G, Bellanti JA, Moser R, Ryffel B, Zheng SG (2020) Regulatory T cells: a potential weapon to combat COVID-19? Med Comm 1(2):157–164

    Google Scholar 

  45. Long B, Brady WJ, Koyfman A, Gottlieb M (2020) Cardiovascular complications in COVID-19. Am J Emerg Med 38(7):1504–1507

    Article  PubMed  PubMed Central  Google Scholar 

  46. Novák P, Jackson AO, Zhao G-J, Yin K (2020) Bilirubin in metabolic syndrome and associated inflammatory diseases: new perspectives. Life Sci 257:118032

    Article  PubMed  Google Scholar 

  47. Leem AY, Kim YS, Lee J-H, Kim T-H, Kim HY, Oh YM et al (2019) Serum bilirubin level is associated with exercise capacity and quality of life in chronic obstructive pulmonary disease. Respir Res 20(1):1–8

    Article  Google Scholar 

  48. Santangelo R, Mancuso C, Marchetti S, Di Stasio E, Pani G, Fadda G (2012) Bilirubin: an endogenous molecule with antiviral activity in vitro. Front Pharmacol 3:36

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lin Y, Wang S, Yang Z, Gao L, Zhou Z, Yu P et al (2019) Bilirubin alleviates alum–induced peritonitis through inactivation of NLRP3 inflammasome. Biomed Pharmacother 116:108973

    Article  CAS  PubMed  Google Scholar 

  50. Shaw J, Chakraborty A, Nag A, Chattopadyay A, Dasgupta AK, Bhattacharyya M (2017) Intracellular iron overload leading to DNA damage of lymphocytes and immune dysfunction in thalassemia major patients. Eur J Haematol 99(5):399–408

    Article  CAS  PubMed  Google Scholar 

  51. Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A (2018) Inflammaging: a new immune–metabolic viewpoint for age-related diseases. Nat Rev Endocrinol 14(10):576–590

    Article  CAS  PubMed  Google Scholar 

  52. Ghatreh-Samani M, Esmaeili N, Soleimani M, Asadi-Samani M, Ghatreh-Samani K, Shirzad H (2016) Oxidative stress and age-related changes in T cells: is thalassemia a model of accelerated immune system aging? Cent Eur J Immunol 41(1):116–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fulop T, Witkowski JM, Olivieri F, Larbi A (2018) The integration of inflammaging in age-related diseases. Semin Immunol 2018:17–35

    Article  Google Scholar 

  54. Fulop T, Larbi A, Dupuis G, Le Page A, Frost EH, Cohen AA et al (2018) Immunosenescence and inflamm-aging as two sides of the same coin: friends or foes? Front Immunol 8:1960

    Article  PubMed  PubMed Central  Google Scholar 

  55. Pietrobon AJ, Teixeira FME, Sato MN (2020) I mmunosenescence and inflammaging: risk factors of severe COVID-19 in older people. Front Immunol 11:579220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. d'Arqom A, Putri GM, Savitri Y, Rahul Alfaidin AM (2020) Vitamin and mineral supplementation for β-thalassemia during COVID-19 pandemic. Future Sci OA 6(9):FSO628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shah VK, Firmal P, Alam A, Ganguly D, Chattopadhyay S (2020) Overview of immune response during SARS-CoV-2 infection: lessons from the past. Front Immunol 11:1949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Messa E, Carturan S, Maffè C, Pautasso M, Bracco E, Roetto A et al (2010) Deferasirox is a powerful NF-κB inhibitor in myelodysplastic cells and in leukemia cell lines acting independently from cell iron deprivation by chelation and reactive oxygen species scavenging. Haematologica 95(8):1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Karunaratna AMDS, Ranasingha JGS, Mudiyanse RM (2018) Zinc status in beta thalassemia major patients. Biol Trace Elem Res 184:1–6

    Article  CAS  PubMed  Google Scholar 

  60. Alhillawi ZH, Al-Hakeim HK, Moustafa SR, Maes M (2021) Increased zinc and albumin but lowered copper in children with transfusion-dependent thalassemia. J Trace Elem Med Biol 65:126713

    Article  CAS  PubMed  Google Scholar 

  61. Skalny AV, Rink L, Ajsuvakova OP, Aschner M, Gritsenko VA, Alekseenko SI et al (2020) Zinc and respiratory tract infections: perspectives for COVID-19. Int J Mol Med 46(1):17–26

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Jothimani D, Kailasam E, Danielraj S, Nallathambi B, Ramachandran H, Sekar P et al (2020) COVID-19: poor outcomes in patients with zinc deficiency. Int J Infect Dis 100:343–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ayyash H, Sirdah M (2018) Hematological and biochemical evaluation of β-thalassemia major (βTM) patients in Gaza strip: a cross-sectional study. Int J Health Sci 12(6):18

    Google Scholar 

  64. Levin C, Koren A, Rebibo-Sabbah A, Koifman N, Brenner B, Aharon A (2018) Extracellular vesicle characteristics in β-thalassemia as potential biomarkers for spleen functional status and ineffective erythropoiesis. Front Physiol 9:1214

    Article  PubMed  PubMed Central  Google Scholar 

  65. Chang L, Zhao L, Gong H, Wang L, Wang L (2020) Severe acute respiratory syndrome coronavirus 2 RNA detected in blood donations. Emerg Infect Dis 26(7):1631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lee C, Leung JS, Cheng P, Lung D, To K, Tsang D (2021) Absence of SARS-CoV-2 viraemia in a blood donor with COVID-19 post-donation. Transfus Med 31(3):223

    Article  CAS  PubMed  Google Scholar 

  67. Moafa W, Aldhamdi N, Alhazmi S, Gohal G, Moafa W, Alhazmi A (2022) Covid-19 in patients with sickle cell disease. Egypt J Haematol 47(1):11

    Article  Google Scholar 

  68. Del Campo PL, de Paz AR, López AR, de la Cruz BB, Barbier KH, Vadillo IS et al (2020) No transmission of SARS-CoV-2 in a patient undergoing allogeneic hematopoietic cell transplantation from a matched-related donor with unknown COVID-19. Transfus Apher Sci 59(6):102921

    Article  Google Scholar 

  69. Habib HM, Ibrahim S, Zaim A, Ibrahim WH (2021) The role of iron in the pathogenesis of COVID-19 and possible treatment with lactoferrin and other iron chelators. Biomed Pharmacother 136:111228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Del Nonno F, Nardacci R, Colombo D, Visco-Comandini U, Cicalini S, Antinori A et al (2021) Hepatic failure in COVID-19: is iron overload the dangerous trigger? Cells 10(5):1103

    Article  PubMed  PubMed Central  Google Scholar 

  71. Karimi M, Haghpanah S, Zarei T, Azarkeivan A, Shirkavand A, Matin S et al (2020) Prevalence and severity of coronavirus disease 2019 (COVID-19) in transfusion dependent and non-transfusion dependent β-thalassemia patients and effects of associated comorbidities: an Iranian nationwide study. Acta Bio Medica: Atenei Parmensis 91(3):e2020007

    CAS  PubMed  Google Scholar 

  72. Rahimi S, Zakeri S, Nouri M, Mohassel Y, Karami B, Jomor SOH et al (2021) Thalassemia and COVID-19: susceptibility and Severity. Iran J Pediatr 31(6). https://doi.org/10.5812/ijp.119789

  73. Lee JX, Chieng WK, Lau SCD, Tan CE (2021) COVID-19 and hemoglobinopathies: a systematic review of clinical presentations, investigations, and outcomes. Front Med 8:757510

    Article  Google Scholar 

  74. Ruscitti P, Berardicurti O, Barile A, Cipriani P, Shoenfeld Y, Iagnocco A et al (2020) Severe COVID-19 and related hyperferritinaemia: more than an innocent bystander? Ann Rheum Dis 79(11):1515–1516

    Article  CAS  PubMed  Google Scholar 

  75. Haghpanah S, Hosseini-Bensenjan M, Sayadi M, Karimi M (2021) Incidence rate of COVID-19 infection in hemoglobinopathies: a systematic review and meta-analysis. Hemoglobin 45(6):371–379

    Article  CAS  PubMed  Google Scholar 

  76. De Sanctis V, Soliman AT, Elsedfy H, Skordis N, Kattamis C, Angastiniotis M et al (2013) Growth and endocrine disorders in thalassemia: the international network on endocrine complications in thalassemia (I-CET) position statement and guidelines. Indian J Endocrinol Metab 17(1):8

    Article  PubMed  PubMed Central  Google Scholar 

  77. De Sanctis V, Canatan D, Corrons JLV, Karimi M, Daar S, Kattamis C et al (2020) Preliminary data on COVID-19 in patients with hemoglobinopathies: a multicentre ICET-a study. Mediterr J Hematol Infect Dis 12(1):e2020046. https://doi.org/10.4084/MJHID.2020.046

  78. Karimi M, Cohan N, De Sanctis V, Mallat NS, Taher A (2014) Guidelines for diagnosis and management of beta-thalassemia intermedia. Pediatr Hematol Oncol 31(7):583–596

    Article  CAS  PubMed  Google Scholar 

  79. Bergamaschi G, Borrelli de Andreis F, Aronico N, Lenti MV, Barteselli C, Merli S et al (2021) Anemia in patients with Covid-19: pathogenesis and clinical significance. Clin Exp Med 21(2):239–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sposi NM (2019) Oxidative stress and iron overload in β-thalassemia: an overview. Beta Thalassemia 3:40–51

    Google Scholar 

  81. Fibach E, Dana M (2019) Oxidative stress in β-thalassemia. Mol Diagn Ther 23:245–261

    Article  CAS  PubMed  Google Scholar 

  82. Gharagozloo M, Bagherpour B, Tahanian M, Oreizy F, Amirghofran Z, Sadeghi HMM et al (2009) Premature senescence of T lymphocytes from patients with β-thalassemia major. Immunol Lett 122(1):84–88

    Article  CAS  PubMed  Google Scholar 

  83. Ntyonga-Pono M-P (2020) COVID-19 infection and oxidative stress: an under-explored approach for prevention and treatment? Pan Afr Med J 35(Suppl 2):12. https://doi.org/10.11604/pamj.2020.35.2.22877

    Article  PubMed  PubMed Central  Google Scholar 

  84. Fang X, Li S, Yu H, Wang P, Zhang Y, Chen Z et al (2020) Epidemiological, comorbidity factors with severity and prognosis of COVID-19: a systematic review and meta-analysis. Aging 12(13):12493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Okar L, Ali M, Parengal J, Yassin MA (2020) COVID-19 and thalassemia beta major in splenectomized patient: clinical case progression and literature review. Clin Case Rep 8(12):2917–2921

    Article  Google Scholar 

  86. Marhaeni W, Wijaya AB, Kusumaningtyas P, Mapianto RS (2020) Thalassemic child presenting with anosmia due to COVID-19. Indian J Pediatr 87:750

    Article  PubMed  PubMed Central  Google Scholar 

  87. Beltrán-García J, Osca-Verdegal R, Pallardó FV, Ferreres J, Rodríguez M, Mulet S et al (2020) Oxidative stress and inflammation in COVID-19-associated sepsis: the potential role of anti-oxidant therapy in avoiding disease progression. Antioxidants 9(10):936

    Article  PubMed  PubMed Central  Google Scholar 

  88. Silvagno F, Vernone A, Pescarmona GP (2020) The role of glutathione in protecting against the severe inflammatory response triggered by COVID-19. Antioxidants 9(7):624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Nasseri E, Mohammadi E, Tamaddoni A, Qujeq D, Zayeri F, Zand H (2017) Benefits of curcumin supplementation on antioxidant status in β-thalassemia major patients: a double-blind randomized controlled clinical trial. Ann Nutr Metab 71(3-4):136–144

    Article  CAS  PubMed  Google Scholar 

  90. Raducka-Jaszul O, Bogusławska DM, Jędruchniewicz N, Sikorski AF (2020) Role of extrinsic apoptotic signaling pathway during definitive erythropoiesis in normal patients and in patients with β-thalassemia. Int J Mol Sci 21(9):3325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mauvais-Jarvis F (2020) Aging, male sex, obesity, and metabolic inflammation create the perfect storm for COVID-19. Diabetes 69(9):1857–1863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. He L-N, Chen W, Yang Y, Xie Y-J, Xiong Z-Y, Chen D-Y et al (2019) Elevated prevalence of abnormal glucose metabolism and other endocrine disorders in patients with-thalassemia major: a meta-analysis. Biomed Res Int 2019:1–13

    Google Scholar 

  93. Mula-Abed W-A, Al Hashmi H, Al Muslahi M, Al Muslahi H, Al Lamki M (2008) Prevalence of endocrinopathies in patients with beta-thalassaemia major-a cross-sectional study in Oman. Oman Med J 23(4):257

    PubMed  PubMed Central  Google Scholar 

  94. Abdul-Hadi MH, Naji MT, Shams HA, Sami OM, Al-Harchan NA-A, Al-Kuraishy HM et al (2020) Oxidative stress injury and glucolipotoxicity in type 2 diabetes mellitus: the potential role of metformin and sitagliptin. Biomedical and Biotechnology Research Journal 4(2):166

    Article  Google Scholar 

  95. Shi Q, Zhang X, Jiang F, Zhang X, Hu N, Bimu C et al (2020) Clinical characteristics and risk factors for mortality of COVID-19 patients with diabetes in Wuhan, China: a two-center, retrospective study. Diabetes Care 43(7):1382–1391

    Article  CAS  PubMed  Google Scholar 

  96. Li Y, Han X, Alwalid O, Cui Y, Cao Y, Liu J et al (2020) Baseline characteristics and risk factors for short-term outcomes in 132 COVID-19 patients with diabetes in Wuhan China: a retrospective study. Diabetes Res Clin Pract 166:108299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mirani M, Favacchio G, Carrone F, Betella N, Biamonte E, Morenghi E et al (2020) Impact of comorbidities and glycemia at admission and dipeptidyl peptidase 4 inhibitors in patients with type 2 diabetes with COVID-19: a case series from an academic hospital in Lombardy, Italy. Diabetes Care 43(12):3042–3049

    Article  CAS  PubMed  Google Scholar 

  98. Frydrych LM, Bian G, O’Lone DE, Ward PA, Delano MJ (2018) Obesity and type 2 diabetes mellitus drive immune dysfunction, infection development, and sepsis mortality. J Leukoc Biol 104(3):525–534

    Article  CAS  PubMed  Google Scholar 

  99. Finucane FM, Davenport C (2020) Coronavirus and obesity: could insulin resistance mediate the severity of Covid-19 infection? Front Public Health 8:184

    Article  PubMed  PubMed Central  Google Scholar 

  100. Valk T, McMorrow C (2020) Managing hyperglycemia during the COVID-19 pandemic: improving outcomes using new technologies in intensive care. SAGE Open Med 8:2050312120974174

    Article  PubMed  PubMed Central  Google Scholar 

  101. Çayan S, Uğuz M, Saylam B, Akbay E (2020) Effect of serum total testosterone and its relationship with other laboratory parameters on the prognosis of coronavirus disease 2019 (COVID-19) in SARS-CoV-2 infected male patients: a cohort study. Aging Male 23(5):1493–1503

    Article  PubMed  Google Scholar 

  102. Teixeira TA, Oliveira YC, Bernardes FS, Kallas EG, Duarte-Neto AN, Esteves SC et al (2021) Viral infections and implications for male reproductive health. Asian J Androl 23(4):335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. De Sanctis V, Soliman AT, Yassin MA, Di Maio S, Daar S, Elsedfy H et al (2018) Hypogonadism in male thalassemia major patients: pathophysiology, diagnosis and treatment. Acta Bio Medica: Atenei Parmensis 89(Suppl 2):6

    PubMed  Google Scholar 

  104. Adiwinoto RD, Pranoto A, Prayogo AA, Soelistijo SA (2020) Low total testosterone levels in adult male thalassemia major patients: an overlooked complication of iron overload. EurAsian J BioSci 14(1):2461–2466

    CAS  Google Scholar 

  105. Schroeder M, Tuku B, Jarczak D, Nierhaus A, Bai T, Jacobsen H et al (2020) The majority of male patients with COVID-19 present low testosterone levels on admission to intensive care in Hamburg, Germany: a retrospective cohort study. MedRxiv 2020–05. https://doi.org/10.1101/2020.05.07.20073817

  106. Paul A, Thomson VS, Refaat M, Al-Rawahi B, Taher A, Nadar SK (2019) Cardiac involvement in beta-thalassaemia: current treatment strategies. Postgrad Med 131(4):261–267

    Article  PubMed  Google Scholar 

  107. Derchi G, Dessì C, Bina P, Cappellini MD, Piga A, Perrotta S et al (2019) Risk factors for heart disease in transfusion-dependent thalassemia: serum ferritin revisited. Intern Emerg Med 14:365–370

    Article  PubMed  Google Scholar 

  108. Aghagoli G, Gallo Marin B, Soliman LB, Sellke FW (2020) Cardiac involvement in COVID-19 patients: risk factors, predictors, and complications: a review. J Card Surg 35(6):1302–1305

    Article  PubMed  PubMed Central  Google Scholar 

  109. Imazio M, Klingel K, Kindermann I, Brucato A, De Rosa FG, Adler Y et al (2020) COVID-19 pandemic and troponin: indirect myocardial injury, myocardial inflammation or myocarditis? Heart 106(15):1127–1131

    Article  CAS  PubMed  Google Scholar 

  110. Ishizaka N, Saito K, Mitani H, Yamazaki I, Sata M, Usui S-i et al (2002) Iron overload augments angiotensin II–induced cardiac fibrosis and promotes neointima formation. Circulation 106(14):1840–1846

    Article  CAS  PubMed  Google Scholar 

  111. Mahdi LS, Faraj SA, Ghali HH (2015) Significance of red blood cell indices in beta-thalassaemia trait. Mustansiriya Med J 14(2):27

    Google Scholar 

  112. Batiha GE-S, Gari A, Elshony N, Shaheen HM, Abubakar MB, Adeyemi SB et al (2021) Hypertension and its management in COVID-19 patients: the assorted view. Inter J Cardiol Cardiovasc Risk Prev 11:200121

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

HMA and MHMA: conceptualization, data collection, and writing of the manuscript. H.M.S: figure preparation, writing and editing of the manuscript. G.E.B: writing, supervision, and editing of the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Hebatallah M. Saad.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Kuraishy, H.M., Mazhar Ashour, M.H., Saad, H.M. et al. COVID-19 and β-thalassemia: in lieu of evidence and vague nexus. Ann Hematol 103, 1423–1433 (2024). https://doi.org/10.1007/s00277-023-05346-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-023-05346-8

Keywords

Navigation