Skip to main content

Advertisement

Log in

Functional Validation of the RQR8 Suicide /Marker Gene in CD19 CAR-T Cells and CLL1CAR-T Cells

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Chimeric antigen receptor T cell therapy (CAR-T) is a novel treatment that has produced unprecedented clinical effects in patients with hematological malignancies. Acute adverse events often occur following adoptive immunotherapy. Therefore, a suicide gene is helpful, which is a genetically encoded mechanism that allows selective destruction of adoptively transferred T cells in the face of unacceptable toxicity. RQR8 is a gene that integrates CD34 and CD20 epitopes. In our study, we incorporated the suicide gene RQR8 into CAR-T cells, so it enabled rituximab to eliminate vector/transgene-expressing T cells via antibody-dependent cell-mediated cytotoxicity and complement dependent cytotoxicity. In this work, we explored the functionality of RQR8 CAR-T cells in vitro and in vivo. We believe that RQR8 as a safety switch will make CAR-T cell therapy safer and less costly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CAR-T cell:

Chimeric antigen receptor T cell

CLL1:

C type lectin domain family 12 member A

NK cell:

Natural killer cell

MOI:

Multiplicity of infection

NSG:

NOD-Prkdcscid Il2rgtm1

CRS:

Cytokine release syndrome

ICANS:

Immune effector cell associated neurotoxic syndrome

HSV-TK:

Herpes simplex virus thymidine kinase

iCasp9:

Inducible caspase 9

ADCC:

Antibody-dependent cell-mediated cytotoxicity

CDC:

Complement dependent toxicity

MND:

A myeloproliferative sarcoma virus enhancer, a dl587Rev primer binding site substituted promoter

EF-1α:

Extension factor 1α

References

  1. June CH, Sadelain M (2018) Chimeric antigen receptor therapy. N Engl J Med 379(1):64–73. https://doi.org/10.1056/NEJMra1706169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lee DW, Kochenderfer JN, Stetler-Stevenson M et al (2015) T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet (London, England) 385(9967):517–528. https://doi.org/10.1016/s0140-6736(14)61403-3

    Article  CAS  PubMed  Google Scholar 

  3. Fitzgerald JC, Weiss SL, Maude SL et al (2017) Cytokine release syndrome after chimeric antigen receptor T cell therapy for acute lymphoblastic leukemia. Crit Care Med 45(2):e124-ee31. https://doi.org/10.1097/ccm.0000000000002053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schubert ML, Schmitt M, Wang L et al (2021) Side-effect management of chimeric antigen receptor (CAR) T-cell therapy. Ann Oncol 32(1):34–48. https://doi.org/10.1016/j.annonc.2020.10.478

    Article  CAS  PubMed  Google Scholar 

  5. Yu S, Yi M, Qin S et al (2019) Next generation chimeric antigen receptor T cells: safety strategies to overcome toxicity. Mol Cancer 18(1):125. https://doi.org/10.1186/s12943-019-1057-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Maude SL, Frey N, Shaw PA et al (2014) Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 371(16):1507–1517. https://doi.org/10.1056/NEJMoa1407222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Porter DL, Hwang WT, Frey NV et al (2015) Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med 7(303):303ra139. https://doi.org/10.1126/scitranslmed.aac5415

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ali SA, Shi V, Maric I et al (2016) T cells expressing an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of multiple myeloma. Blood 128(13):1688–1700. https://doi.org/10.1182/blood-2016-04-711903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Davila ML, Riviere I, Wang X et al (2014) Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med 6(224):224ra25. https://doi.org/10.1126/scitranslmed.3008226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Neelapu SS, Tummala S, Kebriaei P et al (2018) Chimeric antigen receptor T-cell therapy - assessment and management of toxicities. Nat Rev Clin Oncol 15(1):47–62. https://doi.org/10.1038/nrclinonc.2017.148

    Article  CAS  PubMed  Google Scholar 

  11. Zhang H, Hu Y, Shao M et al (2021) Dasatinib enhances anti-leukemia efficacy of chimeric antigen receptor T cells by inhibiting cell differentiation and exhaustion. J Hematol 14(1):113. https://doi.org/10.1186/s13045-021-01117-y

    Article  CAS  Google Scholar 

  12. Zheng Y, Nandakumar KS, Cheng K (2021) Optimization of CAR-T cell-based therapies using small-molecule-based safety switches. J Med Chem 64(14):9577–9591. https://doi.org/10.1021/acs.jmedchem.0c02054

    Article  CAS  PubMed  Google Scholar 

  13. Hotblack A, Kokalaki EK, Palton MJ et al (2021) Tunable control of CAR T cell activity through tetracycline mediated disruption of protein-protein interaction. Sci Rep 11(1):21902. https://doi.org/10.1038/s41598-021-01418-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Marin V, Cribioli E, Philip B et al (2012) Comparison of different suicide-gene strategies for the safety improvement of genetically manipulated T cells. Hum Gene Ther Methods 23(6):376–386. https://doi.org/10.1089/hgtb.2012.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yi QY, Bai ZS, Cai B et al (2018) HSV-TK/GCV can induce cytotoxicity of retinoblastoma cells through autophagy inhibition by activating MAPK/ERK. Onco Rep 40(2):682–692. https://doi.org/10.3892/or.2018.6454

    Article  CAS  Google Scholar 

  16. Straathof KC, Pulè MA, Yotnda P et al (2005) An inducible caspase 9 safety switch for T-cell therapy. Blood 105(11):4247–4254. https://doi.org/10.1182/blood-2004-11-4564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gargett T, Brown MP (2014) The inducible caspase-9 suicide gene system as a "safety switch" to limit on-target, off-tumor toxicities of chimeric antigen receptor T cells. Front Pharmacol 5:235. https://doi.org/10.3389/fphar.2014.00235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Di Stasi A, Tey SK, Dotti G et al (2011) Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med 365(18):1673–1683. https://doi.org/10.1056/NEJMoa1106152

    Article  PubMed  PubMed Central  Google Scholar 

  19. Philip B, Kokalaki E, Mekkaoui L et al (2014) A highly compact epitope-based marker/suicide gene for easier and safer T-cell therapy. Blood 124(8):1277–1287. https://doi.org/10.1182/blood-2014-01-545020

    Article  CAS  PubMed  Google Scholar 

  20. Mosti L, Langner LM, Chmielewski KO et al (2021) Targeted multi-epitope switching enables straightforward positive/negative selection of CAR T cells. Gene Ther 28(9):602–612. https://doi.org/10.1038/s41434-021-00220-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Binder M, Otto F, Mertelsmann R et al (2006) The epitope recognized by rituximab. Blood 108(6):1975–1978. https://doi.org/10.1182/blood-2006-04-014639

    Article  CAS  PubMed  Google Scholar 

  22. Gargett T, Truong N, Ebert LM et al (2019) Optimization of manufacturing conditions for chimeric antigen receptor T cells to favor cells with a central memory phenotype. Cytotherapy 21(6):593–602. https://doi.org/10.1016/j.jcyt.2019.03.003

    Article  CAS  PubMed  Google Scholar 

  23. Hinrichs CS, Borman ZA, Gattinoni L et al (2011) Human effector CD8+ T cells derived from naive rather than memory subsets possess superior traits for adoptive immunotherapy. Blood 117(3):808–814. https://doi.org/10.1182/blood-2010-05-286286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jin X, Lu W, Zhang M et al (2021) Infection temperature affects the phenotype and function of chimeric antigen receptor T cells produced via lentiviral technology. Front Immunol 12:638907. https://doi.org/10.3389/fimmu.2021.638907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Neelapu SS, Locke FL, Bartlett NL et al (2017) Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med 377(26):2531–2544. https://doi.org/10.1056/NEJMoa1707447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang Z, Wu Z, Liu Y et al (2017) New development in CAR-T cell therapy. J Hematol 10(1):53. https://doi.org/10.1186/s13045-017-0423-1

    Article  CAS  Google Scholar 

  27. Maude SL, Laetsch TW, Buechner J et al (2018) Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med 378(5):439–448. https://doi.org/10.1056/NEJMoa1709866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Majzner RG, Mackall CL (2019) Clinical lessons learned from the first leg of the CAR T cell journey. Nat Med 25(9):1341–1355. https://doi.org/10.1038/s41591-019-0564-6

    Article  CAS  PubMed  Google Scholar 

  29. Roddie C, O’Reilly M, Dias Alves Pinto J et al (2019) Manufacturing chimeric antigen receptor T cells: Issues and challenges. Cytotherapy 21(3):327–340. https://doi.org/10.1016/j.jcyt.2018.11.009

    Article  CAS  PubMed  Google Scholar 

  30. Brudno JN, Kochenderfer JN (2019) Recent advances in CAR T-cell toxicity: mechanisms, manifestations and management. Blood Rev 34:45–55. https://doi.org/10.1016/j.blre.2018.11.002

    Article  CAS  PubMed  Google Scholar 

  31. Qasim W, Zhan H, Samarasinghe S et al (2017) Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells. Sci Transl Med 9(374). https://doi.org/10.1126/scitranslmed.aaj2013

  32. Ho JY, Wang L, Liu Y et al (2021) Promoter usage regulating the surface density of CAR molecules may modulate the kinetics of CAR-T cells in vivo. Mol Ther - Methods Clin Dev 21:237–246. https://doi.org/10.1016/j.omtm.2021.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Maloney DG, Grillo-López AJ, White CA et al (1997) IDEC-C2B8 (Rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin's lymphoma. Blood 90(6):2188–2195

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the General Project of National Natural Science Foundation of China (81970180), and the Key Science and Technology Bureau (20YFZCSY00800), as well as Tianjin Key Medical Discipline (Specialty) Construction Project.

Author information

Authors and Affiliations

Authors

Contributions

MFZ designed the research. XX, XJ, YBY, DNX, RS, YXW, and WYL performed the research. XX, XJ, YBY, and RS analyzed the data. XX, XJ, and YBY wrote the manuscript. XX, XJ, YBY, and MFZ revised the manuscript. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Mingfeng Zhao.

Ethics declarations

Ethics statement

The studies involving human participants were reviewed and approved by Ethics Committee of Tianjin First Central Hospital. The patients/participants provided their written informed consent to participate in this study. The animal study was reviewed and approved by Ethics Committee of Tianjin First Central Hospital.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, X., Yu, Y., Jin, X. et al. Functional Validation of the RQR8 Suicide /Marker Gene in CD19 CAR-T Cells and CLL1CAR-T Cells. Ann Hematol 102, 1523–1535 (2023). https://doi.org/10.1007/s00277-023-05227-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-023-05227-0

Keywords

Navigation