Skip to main content

Advertisement

Log in

Ferroptosis: a new target for iron overload-induced hemophilic arthropathy synovitis

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Iron deposition is closely related to developing haemophilic arthropathy (HA). Studying the relationship between ferroptosis signal expression and iron overload in HA synovium facilitates understanding the pathogenesis of joint synovial hyperplasia in bloodborne arthritis and the development of new protective methods. The knee synovium was collected from HA and osteoarthritis (OA) patients, and pathological changes were analysed by HE and Prussian blue staining. Ferroptosis phenotypes were examined by immunohistochemistry and western blotting. Moreover, ferric ammonium citrate (FAC)-induced was used to construct an in vitro iron overload model to investigate the relationship between iron overload and ferroptosis in synovial fibroblasts (FLS). Furthermore, the factors influencing ferroptosis in FLS were explored. Iron deposition, cell proliferation, and vascular proliferation in the synovium of HA were more obvious. Ferroptosis in HA synovium appears to inhibit. FLS ferroptosis increased with iron accumulation, malondialdehyde (MDA) in cells, and glutathione (GSH) depletion. TNF-α plays a protective role in this process. Blocking the action of TNF-α and inducing ferroptosis significantly reduced synovial proliferation. TNF-α inhibitors combined with a ferroptosis inducer may be a new therapeutic method for HA synovitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Cooke EJ, Zhou JY, Wyseure T, Joshi S, Bhat V, Durden DL, Mosnier LO, von Drygalski A (2018) Vascular permeability and remodelling coincide with inflammatory and reparative processes after joint bleeding in factor VIII-deficient mice. Thromb Haemost 118:1036–1047. https://doi.org/10.1055/s-0038-1641755

    Article  PubMed  PubMed Central  Google Scholar 

  2. Nieuwenhuizen L, Schutgens RE, van Asbeck BS, Wenting MJ, van Veghel K, Roosendaal G, Biesma DH, Lafeber FP (2013) Identification and expression of iron regulators in human synovium: evidence for upregulation in haemophilic arthropathy compared to rheumatoid arthritis, osteoarthritis, and healthy controls. Haemophilia 19:e218–e227. https://doi.org/10.1111/hae.12208

    Article  CAS  PubMed  Google Scholar 

  3. Roosendaal G, Vianen ME, van den Berg HM, Lafeber FP, Bijlsma JW (1997) Cartilage damage as a result of hemarthrosis in a human in vitro model. J Rheumatol 24:1350–1354

    CAS  PubMed  Google Scholar 

  4. Rodriguez-Merchan EC (2021) Haemophilic arthropathy: contemporary management challenges and a future scenario. Haemophilia 27:e765–e767. https://doi.org/10.1111/hae.14411

    Article  PubMed  Google Scholar 

  5. Wojdasiewicz P, Poniatowski ŁA, Kotela A, Skoda M, Pyzlak M, Stangret A, Kotela I, Szukiewicz D (2020) Comparative analysis of the occurrence and role of CX3CL1 (fractalkine) and its receptor CX3CR1 in hemophilic arthropathy and osteoarthritis. J Immunol Res 2020:2932696. https://doi.org/10.1155/2020/2932696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ahn J, Yoo MC, Seo J, Park M, Jeong BO (2020) Comparison of total ankle arthroplasty and ankle arthrodesis in end-stage hemophilic arthropathy. Foot Ankle Int 41:937–944. https://doi.org/10.1177/1071100720929002

    Article  PubMed  Google Scholar 

  7. van Bergen EDP, Mastbergen SC, Lafeber FPJG, Schutgens REG, van Vulpen LFD (2021) Challenges in biomarker research in haemophilic arthropathy. Haemophilia 27:e547–e548. https://doi.org/10.1111/hae.14290

    Article  PubMed  Google Scholar 

  8. Huang J, Zhu H, Lv S, Tong P, Xun L, Zhang S (2021) Inflammation, angiogenesis and sensory nerve sprouting in the synovium of bony ankylosed and not bony ankylosed knees with end-stage haemophilic arthropathy. Haemophilia 27:657–665. https://doi.org/10.1111/hae.14343

    Article  CAS  PubMed  Google Scholar 

  9. Lövgren KM, Christensen KR, Majewski W, Østrup O, Skov S, Wiinberg B (2017) Acute haemarthrosis in the haemophilia a rat generates a local and systemic proinflammatory response. Thromb. Haemost. 117:2092–2104

    Article  PubMed  Google Scholar 

  10. Christensen KR, Kjelgaard-Hansen M, Nielsen LN, Wiinberg B, Alexander Althoehn F, Bloksgaard Poulsen N, Kryger Vøls K, Popp Thyme A, Maria Lövgren K, Kornerup Hansen A, Roepstorff K (2019) Rapid inflammation and early degeneration of bone and cartilage revealed in a time-course study of induced haemarthrosis in haemophilic rats. Rheumatology 58:588–599. https://doi.org/10.1093/rheumatology/key186

    Article  CAS  PubMed  Google Scholar 

  11. Park E, Chung SW (2019) ROS-mediated autophagy increases intracellular iron levels and ferroptosis by ferritin and transferrin receptor regulation. Cell Death Dis 10:822. https://doi.org/10.1038/s41419-019-2064-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Beaufay F, Quarles E, Franz A, Katamanin O, Wholey WY, Jakob U (2020) Polyphosphate functions in vivo as an iron chelator and Fenton reaction inhibitor. mBio 11:e01017–e01020. https://doi.org/10.1128/mBio.01017-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wu J, Feng Z, Chen L, Li Y, Bian H, Geng J, Zheng ZH, Fu X, Pei Z, Qin Y, Yang L, Zhao Y, Wang K, Chen R, He Q, Nan G, Jiang X, Chen ZN, Zhu P (2022) TNF antagonist sensitizes synovial fibroblasts to ferroptotic cell death in collagen-induced arthritis mouse models. Nat Commun 13:676. https://doi.org/10.1038/s41467-021-27948-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Seibt TM, Proneth B, Conrad M (2019) Role of GPX4 in ferroptosis and its pharmacological implication. Free Radic Biol Med 133:144–152. https://doi.org/10.1016/j.freeradbiomed.2018.09.014

    Article  CAS  PubMed  Google Scholar 

  15. Hong T, Lei G, Chen X, Li H, Zhang X, Wu N, Zhao Y, Zhang Y, Wang J (2021) PARP inhibition promotes ferroptosis via repressing SLC7A11 and synergizes with ferroptosis inducers in BRCA-proficient ovarian cancer. Redox Biol 42:101928. https://doi.org/10.1016/j.redox.2021.101928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jiang X, Stockwell BR, Conrad M (2021) Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Bio 22:266–282. https://doi.org/10.1038/s41580-020-00324-8

    Article  CAS  Google Scholar 

  17. Ebel P, Imgrund S, Vom Dorp K, Hofmann K, Maier H, Drake H, Degen J, Dörmann P, Eckhardt M, Franz T, Willecke K (2014) Willecke ceramide synthase 4 deficiency in mice causes lipid alterations in sebum and results in alopecia. Biochem J 461:147–158. https://doi.org/10.1042/BJ20131242

    Article  CAS  PubMed  Google Scholar 

  18. Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB, Brown LM, Girotti AW, Cornish VW, Schreiber SL, Stockwell BR (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156:317–331. https://doi.org/10.1016/j.cell.2013.12.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Melchiorre D, Milia AF, Linari S, Romano E, Benelli G, Manetti M, Guiducci S, Ceccarelli C, Innocenti M, Carulli C, Civinini R, Morfini M, Matucci-Cerinic M, Ibba-Manneschi L (2012) RANK-RANKL-OPG in hemophilic arthropathy: from clinical and imaging diagnosis to histopathology. J Rheumatol 39:1678–1686. https://doi.org/10.3899/jrheum.120370

    Article  CAS  PubMed  Google Scholar 

  20. Melchiorre D, Linari S, Manetti M, Romano E, Sofi F, Matucci-Cerinic M, Carulli C, Innocenti M, Ibba-Manneschi L, Castaman G (2016) Clinical, instrumental, serological and histological findings suggest that hemophilia B may be less severe than hemophilia A. Haematologica 101:219–225. https://doi.org/10.3324/haematol.2015.133462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang ZX, Ma J, Li XY, Wu Y, Shi H, Chen Y, Lu G, Shen HM, Lu GD, Zhou J (2021) Quercetin induces p53-independent cancer cell death through lysosome activation by the transcription factor EB and reactive oxygen species-dependent ferroptosis. Br J Pharmacol 178:1133–1148. https://doi.org/10.1111/bph.15350

    Article  CAS  PubMed  Google Scholar 

  22. Wu J, Zhang L, Wu S, Yi X, Liu Z (2020) miR-194-5p inhibits SLC40A1 expression to induce cisplatin resistance in ovarian cancer. Pathol Res Pract 216:152979. https://doi.org/10.1016/j.prp.2020.152979

    Article  CAS  PubMed  Google Scholar 

  23. Thomas S, Mendes JD, Souza SA, Lorenzato CS, Assi PE, Pacheco LR, Gabriel MB, Bordim A, Gutfilen B, da Fonseca LM (2013) Radioactive synovectomy with (90) yttrium and (153) samarium hydroxyapatite in haemophilic joints: preliminary study on radiation safety. Haemophilia 19:632–636. https://doi.org/10.1111/hae.12122

    Article  CAS  PubMed  Google Scholar 

  24. Hentze MW, Muckenthaler MU, Andrews NC (2004) Balancing acts:molecular control of mammalian iron metabolism. Cell 117:285–297. https://doi.org/10.1016/s0092-8674(04)00343-5

    Article  CAS  PubMed  Google Scholar 

  25. Lieu PT, Heiskala M, Peterson PA, Yang Y (2001) The roles of iron in health and disease. Mol Aspects Med 22:1–87. https://doi.org/10.1016/s0098-2997(00)00006-6

    Article  CAS  PubMed  Google Scholar 

  26. Papanikolaou G, Pantopoulos K (2005) Iron metabolism and toxicity. Toxicol Appl Pharmacol 202:199–211. https://doi.org/10.1016/j.taap.2004.06.021

    Article  CAS  PubMed  Google Scholar 

  27. Brissot P, Troadec MB, Loréal O, Brissot E (2019) Pathophysiology and classification of iron overload diseases; update 2018. Transfus Clin Biol 26:80–88. https://doi.org/10.1016/j.tracli.2018.08.006

    Article  PubMed  Google Scholar 

  28. Wu X, Tao P, Zhou Q, Li J, Yu Z, Wang X, Li J, Li C, Yan M, Zhu Z, Liu B, Su L (2017) IL-6 secreted by cancer-associated fibroblasts promotes epithelial-mesenchymal transition and metastasis of gastric cancer via JAK2/STAT3 signaling pathway. Oncotarget 8:20741–20750. https://doi.org/10.18632/oncotarget.15119

    Article  PubMed Central  Google Scholar 

  29. Du Y, Wang Q, Tian N, Lu M, Zhang XL, Dai SM (2020) Knockdown of nrf2 exacerbates TNF-α-induced proliferation and invasion of rheumatoid arthritis fibroblast-like synoviocytes through activating JNK pathway. J Immunol Res 2020:6670464. https://doi.org/10.1155/2020/6670464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu S, Cao C, Zhang Y, Liu G, Ren W, Ye Y, Sun T (2019) PI3K/Akt inhibitor partly decreases TNF-α-induced activation of fibroblast-like synoviocytes in osteoarthritis. J Orthop Surg Res 14:425. https://doi.org/10.1186/s13018-019-1394-4

    Article  PubMed  PubMed Central  Google Scholar 

  31. Manetti M, Linari S, Romano E, Rosa I, Carulli C, Innocenti M, Matucci-Cerinic M, Ibba-Manneschi L, Castaman G, Melchiorre D (2019) TNF-α/TNF-R system may represent a crucial mediator of proliferative synovitis in hemophilia A. J Clin Med 8:939. https://doi.org/10.3390/jcm8070939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chi PL, Liu CJ, Lee IT, Chen YW, Hsiao LD, Yang CM (2014) HO-1 induction by CO-RM2 attenuates TNF-α-induced cytosolic phospholipase A2 expression via inhibition of PKCα-dependent NADPH oxidase/ROS and NF-κB. Mediators Inflamm 2014:279171. https://doi.org/10.1155/2014/279171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang WH, Huang Z, Wu J, Ding CC, Murphy SK, Chi JT (2020) A TAZ-ANGPTL4-NOX2 axis regulates ferroptotic cell death and chemoresistance in epithelial ovarian cancer. Mol Cancer Res 18:79–90. https://doi.org/10.1158/1541-7786.MCR-19-0691

    Article  CAS  PubMed  Google Scholar 

  34. Torti SV, Manz DH, Paul BT, Blanchette-Farra N, Torti FM (2018) Iron and cancer. Annu Rev Nutr 38:97–125. https://doi.org/10.1146/annurev-nutr-082117-051732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gualtierotti R, Solimeno LP, Peyvandi F (2021) Hemophilic arthropathy: current knowledge and future perspectives. J Thromb Haemost 19:2112–2121. https://doi.org/10.1111/jth.15444

    Article  PubMed  PubMed Central  Google Scholar 

  36. Obaji S, Jones C, Yates A, Gordon A, Wood A, Alikhan R, Collins P (2015) Selective angiographic embolization for recurrent elbow and knee haemarthroses in haemophilia: a retrospective case series. Haemophilia 21:e226–e228. https://doi.org/10.1111/hae.12629

    Article  CAS  PubMed  Google Scholar 

  37. Rodriguez-Merchan EC, De la Corte-Rodriguez H, Jimenez-Yuste V (2014) Radiosynovectomy in haemophilia: long-term results of 500 procedures performed in a 38-year period. Thromb Res 134:985–990. https://doi.org/10.1016/j.thromres.2014.08.023

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Han and Yao designed the research study and wrote the paper. Han, Zheng, and Luo conducted the experiments and revised the paper. Pang analysed the data. All the authors critically reviewed successive drafts of the manuscript and have approved the final version.

Corresponding author

Correspondence to Yunfeng Yao.

Ethics declarations

Ethical aprroval

The Ethics Review Committee of the Second Affiliated Hospital of Anhui Medical University approved this study.

Informed consent

All patients were fully informed of the purpose of our study and signed informed consent.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Z., Zheng, L., Luo, D. et al. Ferroptosis: a new target for iron overload-induced hemophilic arthropathy synovitis. Ann Hematol 102, 1229–1237 (2023). https://doi.org/10.1007/s00277-023-05190-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-023-05190-w

Keywords

Navigation