Skip to main content

Phase I study of opaganib, an oral sphingosine kinase 2-specific inhibitor, in relapsed and/or refractory multiple myeloma

Abstract

Multiple myeloma (MM) remains an incurable disease and there is an unmet medical need for novel therapeutic drugs that do not share similar mechanisms of action with currently available agents. Sphingosine kinase 2 (SK2) is an innovative molecular target for anticancer therapy. We previously reported that treatment with SK2 inhibitor opaganib inhibited myeloma tumor growth in vitro and in vivo in a mouse xenograft model. In the current study, we performed a phase I study of opaganib in patients with relapsed/refractory multiple myeloma (RRMM). Thirteen patients with RRMM previously treated with immunomodulatory agents and proteasome inhibitors were enrolled and treated with single-agent opaganib at three oral dosing regimens (250 mg BID, 500 mg BID, or 750 mg BID, 28 days as a cycle). Safety and maximal tolerated dose (MTD) were determined. Pharmacokinetics, pharmacodynamics, and correlative studies were also performed. Opaganib was well tolerated up to a dose of 750 mg BID. The most common possibly related adverse event (AE) was decreased neutrophil counts. There were no serious AEs considered to be related to opaganib. MTD was determined as at least 750 mg BID. On an intent-to-treat basis, one patient (7.7%) in the 500 mg BID dose cohort showed a very good partial response, and one other patient (7.7%) achieved stable disease for 3 months. SK2 is an innovative molecular target for antimyeloma therapy. The first-in-class SK2 inhibitor opaganib is generally safe for administration to RRMM patients, and has potential therapeutic activity in these patients. Clinicaltrials.gov: NCT02757326.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Data availability

The data that support the findings of this study are available on request from the corresponding author. Certain data are not publicly available due to privacy or ethical restrictions.

Abbreviations

AE:

Adverse event

BID:

Twice a day

CAR:

Chimeric antigen receptor

CTCAE:

Common Terminology Criteria for Adverse Events

DCEP:

Dexamethasone, cyclophosphamide, etoposide, and cisplatin

DLT:

Dose-limiting toxicity

ECOG PS:

Eastern Cooperative Oncology Group performance status

IMiD:

Immunomodulatory drug

IMWG:

International Myeloma Working Group

MM:

Multiple myeloma

MTD:

Maximal tolerated dose

NDMM:

Newly diagnosed multiple myeloma

PD:

Pharmacodynamic

PFS:

Progression-free survival

PI:

Proteasome inhibitor

PK:

Pharmacokinetic

PrD:

Progressive disease

RRMM:

Relapsed/refractory multiple myeloma

SAE:

Serious adverse event

SD:

Stable disease

SK:

Sphingosine kinase

VD-PACE:

Velcade, dexamethasone, cisplatin, doxorubicin, cyclophosphamide, and etoposide

VGPR:

Very good partial response

References

  1. Siegel R, Miller K, Fuchs H (2021) Cancer statistics, 2021. CA Cancer J Clin 71:7–33

    Article  Google Scholar 

  2. Callander NS, Baljevic M, Adekola K, Anderson LD, Campagnaro E, Castillo JJ, Costello C, Devarakonda S, Elsedawy N, Faiman M et al (2022) NCCN Guidelines® Insights: Multiple Myeloma, Version 3.2022. J Natl Compr Canc Netw 20(1):8–19

    Article  Google Scholar 

  3. Feinberg D, Paul B, Kang Y (2019) The promise of chimeric antigen receptor (CAR) T cell therapy in multiple myeloma. Cellular Immunol 345:103964

  4. Usmani SZ, Garfall AL, van de Donk N, Nahi H, San-Miguel JF, Oriol A, Rosinol L, Chari A, Bhutani M, Karlin L et al (2021) Teclistamab, a B-cell maturation antigen × CD3 bispecific antibody, in patients with relapsed or refractory multiple myeloma (MajesTEC-1): a multicentre, open-label, single-arm, phase 1 study. Lancet 398(10301):665–674

    Article  CAS  Google Scholar 

  5. Yu B, Jiang T, Liu D (2020) BCMA-targeted immunotherapy for multiple myeloma. J Hematol Oncol 13(1):125

    Article  Google Scholar 

  6. Moreau P, Garfall AL, van de Donk N, Nahi H, San-Miguel JF, Oriol A, Nooka AK, Martin T, Rosinol L, Chari A et al (2022) Teclistamab in relapsed or refractory multiple myeloma. N Engl J Med 387(6):495–505

    Article  CAS  Google Scholar 

  7. Perrot A, Lauwers-Cances V, Cazaubiel T, Facon T, Caillot D, Clement-Filliatre L, Macro M, Decaux O, Belhadj K, Mohty M et al (2020) Early versus late autologous stem cell transplant in newly diagnosed multiple myeloma: long-term follow-up analysis of the IFM 2009 Trial. Blood 136(Supplement 1):39–39

    Article  Google Scholar 

  8. Moreau P, Attal M, Hulin C, Arnulf B, Belhadj K, Benboubker L, Béné MC, Broijl A, Caillon H, Caillot D et al (2019) Bortezomib, thalidomide, and dexamethasone with or without daratumumab before and after autologous stem-cell transplantation for newly diagnosed multiple myeloma (CASSIOPEIA): a randomised, open-label, phase 3 study. Lancet 394(10192):29–38

    Article  CAS  Google Scholar 

  9. Lewis CS, Voelkel-Johnson C, Smith CD (2018) Targeting sphingosine kinases for the treatment of cancer. Adv Cancer Res 140:295–325

    Article  CAS  Google Scholar 

  10. Perry DK, Kolesnick RN (2003) Ceramide and sphingosine 1-phosphate in anti-cancer therapies. Cancer Treat Res 115:345–354

    Article  CAS  Google Scholar 

  11. Spiegel S, Milstien S (2002) Sphingosine 1-phosphate, a key cell signaling molecule. J Biol Chem 277(29):25851–25854

    Article  CAS  Google Scholar 

  12. Gupta P, Taiyab A, Hussain A, Alajmi MF, Islam A, Hassan MI (2021) Targeting the sphingosine kinase/sphingosine-1-phosphate signaling axis in drug discovery for cancer therapy. Cancers (Basel) 13(8):1898

  13. Hait NC, Maiti A (2017) The role of sphingosine-1-phosphate and ceramide-1-phosphate in inflammation and cancer. Mediators Inflamm 2017:4806541

    Article  Google Scholar 

  14. Ogretmen B (2018) Sphingolipid metabolism in cancer signalling and therapy. Nat Rev Cancer 18(1):33–50

    Article  CAS  Google Scholar 

  15. Kolesnick R, Fuks Z (2003) Radiation and ceramide-induced apoptosis. Oncogene 22(37):5897–5906

    Article  CAS  Google Scholar 

  16. Pl T, Wang HG (2011) Editorial [hot topic: therapeutic targeting of the sphingolipid “biostat” in hematologic malignancies (guest editors: Thomas p. Loughran and Hong-gang wang)]. Anticancer Agents Med Chem 11(9):780–781

    Article  Google Scholar 

  17. Leong WI, Saba JD (2010) S1P metabolism in cancer and other pathological conditions. Biochimie 92(6):716–723

    Article  CAS  Google Scholar 

  18. Snider AJ, Alexa Orr Gandy K, Obeid LM (2010) Sphingosine kinase: role in regulation of bioactive sphingolipid mediators in inflammation. Biochimie 92(6):707–715

  19. Furuya H, Shimizu Y, Kawamori T (2011) Sphingolipids in cancer. Cancer Metastasis Rev 30(3–4):567–576

    Article  CAS  Google Scholar 

  20. Santos CR, Schulze A (2012) Lipid metabolism in cancer. FEBS J 279(15):2610–2623

  21. Obinata H, Hla T (2019) Sphingosine 1-phosphate and inflammation. Int Immunol 31(9):617–625

    Article  CAS  Google Scholar 

  22. Venkata JK, An N, Stuart R, Costa LJ, Cai H, Coker W, Song JH, Gibbs K, Matson T, Garrett-Mayer E et al (2014) Inhibition of sphingosine kinase 2 downregulates the expression of c-Myc and Mcl-1 and induces apoptosis in multiple myeloma. Blood 124(12):1915–1925

    Article  CAS  Google Scholar 

  23. French KJ, Zhuang Y, Maines LW, Gao P, Wang W, Beljanski V, Upson JJ, Green CL, Keller SN, Smith CD (2010) Pharmacology and antitumor activity of ABC294640, a selective inhibitor of sphingosine kinase-2. J Pharmacol Exp Ther 333(1):129–139

    Article  CAS  Google Scholar 

  24. Sundaramoorthy P, Gasparetto C, Kang Y (2018) The combination of a sphingosine kinase 2 inhibitor (ABC294640) and a Bcl-2 inhibitor (ABT-199) displays synergistic anti-myeloma effects in myeloma cells without a t(11;14) translocation. Cancer Med 7(7):3257–3268

  25. Kumar S, Paiva B, Anderson KC, Durie B, Landgren O, Moreau P, Munshi N, Lonial S, Blade J, Mateos MV et al (2016) International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol 17(8):e328–e346

    Article  Google Scholar 

  26. Kyle RA, Rajkumar SV (2009) Criteria for diagnosis, staging, risk stratification and response assessment of multiple myeloma. Leukemia 23(1):3–9

    Article  CAS  Google Scholar 

  27. Britten CD, Garrett-Mayer E, Chin SH, Shirai K, Ogretmen B, Bentz TA, Brisendine A, Anderton K, Cusack SL, Maines LW et al (2017) A phase i study of ABC294640, a first-in-class sphingosine kinase-2 inhibitor, in patients with advanced solid tumors. Clin Cancer Res 23(16):4642–4650

    Article  CAS  Google Scholar 

  28. Hammad SM, Pierce JS, Soodavar F, Smith KJ, Al Gadban MM, Rembiesa B, Klein RL, Hannun YA, Bielawski J, Bielawska A (2010) Blood sphingolipidomics in healthy humans: impact of sample collection methodology. J Lipid Res 51(10):3074–3087

    Article  CAS  Google Scholar 

  29. Daimon T, Zohar S, O’Quigley J (2011) Posterior maximization and averaging for Bayesian working model choice in the continual reassessment method. Stat Med 30(13):1563–1573

    Article  CAS  Google Scholar 

  30. Yuan Y, Yin G (2011) Robust EM continual reassessment method in oncology dose finding. J Am Stat Assoc 106(495):818–831

    Article  CAS  Google Scholar 

  31. Yin G, Yuan Y (2009) Bayesian model averaging continual reassessment method in phase I clinical trial. J Am Stat Assoc 104:954–968

    Article  CAS  Google Scholar 

  32. Liu Q, Rehman H, Shi Y, Krishnasamy Y, Lemasters JJ, Smith CD, Zhong Z (2012) Inhibition of sphingosine kinase-2 suppresses inflammation and attenuates graft injury after liver transplantation in rats. PLoS ONE 7(7):e41834

    Article  CAS  Google Scholar 

  33. Fitzpatrick LR, Green C, Frauenhoffer EE, French KJ, Zhuang Y, Maines LW, Upson JJ, Paul E, Donahue H, Mosher TJ et al (2011) Attenuation of arthritis in rodents by a novel orally-available inhibitor of sphingosine kinase. Inflammopharmacol 19(2):75–87

    Article  CAS  Google Scholar 

  34. Maines LW, Fitzpatrick LR, Green CL, Zhuang Y, Smith CD (2010) Efficacy of a novel sphingosine kinase inhibitor in experimental Crohn’s disease. Inflammopharmacol 18(2):73–85

    Article  CAS  Google Scholar 

  35. Pei G, Zyla J, He L, Moura-Alves P, Steinle H, Saikali P, Lozza L, Nieuwenhuizen N, Weiner J, Mollenkopf HJ et al (2021) Cellular stress promotes NOD1/2-dependent inflammation via the endogenous metabolite sphingosine-1-phosphate. Embo j 40(13):e106272

    Article  CAS  Google Scholar 

  36. Gomez-Larrauri A, Presa N, Dominguez-Herrera A, Ouro A, Trueba M, Gomez-Muñoz A (2020) Role of bioactive sphingolipids in physiology and pathology. Essays Biochem 64(3):579–589

    Article  CAS  Google Scholar 

  37. Hannun YA, Obeid LM (2018) Sphingolipids and their metabolism in physiology and disease. Nat Rev Mol Cell Biol 19(3):175–191

    Article  CAS  Google Scholar 

  38. Cuvillier O, Pirianov G, Kleuser B, Vanek PG, Coso OA, Gutkind S, Spiegel S (1996) Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature 381(6585):800–803

    Article  CAS  Google Scholar 

  39. Olivera A, Spiegel S (2001) Sphingosine kinase: a mediator of vital cellular functions. Prostaglandins 64(1–4):123–134

    Article  CAS  Google Scholar 

  40. Cowart LA (2009) Sphingolipids: players in the pathology of metabolic disease. Trends Endocrinol Metab 20(1):34–42

    Article  CAS  Google Scholar 

  41. Saddoughi SA, Song P, Ogretmen B (2008) Roles of bioactive sphingolipids in cancer biology and therapeutics. Subcell Biochem 49:413–440

    Article  Google Scholar 

  42. Cuvillier O (2002) Sphingosine in apoptosis signaling. Biochim Biophys Acta 1585(2–3):153–162

    Article  CAS  Google Scholar 

  43. Leung RW, Alison JA, McKeough ZJ, Peters MJ (2011) A study design to investigate the effect of short-form Sun-style Tai Chi in improving functional exercise capacity, physical performance, balance and health related quality of life in people with chronic obstructive pulmonary disease (COPD). Contemp Clin Trials 32(2):267–272

    Article  CAS  Google Scholar 

  44. Lee CF, Dang A, Hernandez E, Pong RC, Chen B, Sonavane R, Raj G, Kapur P, Lin HY, Wu SR et al (2019) Activation of sphingosine kinase by lipopolysaccharide promotes prostate cancer cell invasion and metastasis via SphK1/S1PR4/matriptase. Oncogene 38(28):5580–5598

    Article  CAS  Google Scholar 

  45. Nagahashi M, Yamada A, Katsuta E, Aoyagi T, Huang WC, Terracina KP, Hait NC, Allegood JC, Tsuchida J, Yuza K et al (2018) Targeting the SphK1/S1P/S1PR1 axis that links obesity, chronic inflammation, and breast cancer metastasis. Cancer Res 78(7):1713–1725

    Article  CAS  Google Scholar 

  46. Ader I, Brizuela L, Bouquerel P, Malavaud B, Cuvillier O (2008) Sphingosine kinase 1: a new modulator of hypoxia inducible factor 1alpha during hypoxia in human cancer cells. Cancer Res 68(20):8635–8642

    Article  CAS  Google Scholar 

  47. Ahmad M, Long JS, Pyne NJ, Pyne S (2006) The effect of hypoxia on lipid phosphate receptor and sphingosine kinase expression and mitogen-activated protein kinase signaling in human pulmonary smooth muscle cells. Prostaglandins Other Lipid Mediat 79(3–4):278–286

    Article  CAS  Google Scholar 

  48. Anelli V, Gault CR, Cheng AB, Obeid LM (2008) Sphingosine kinase 1 is up-regulated during hypoxia in U87MG glioma cells. Role of hypoxia-inducible factors 1 and 2. J Biol Chem 283(6):3365–3375

    Article  CAS  Google Scholar 

  49. Schwalm S, Doll F, Romer I, Bubnova S, Pfeilschifter J, Huwiler A (2008) Sphingosine kinase-1 is a hypoxia-regulated gene that stimulates migration of human endothelial cells. Biochem Biophys Res Commun 368(4):1020–1025

    Article  CAS  Google Scholar 

  50. Acharya S, Yao J, Li P, Zhang C, Lowery FJ, Zhang Q, Guo H, Qu J, Yang F, Wistuba II et al (2019) Sphingosine kinase 1 signaling promotes metastasis of triple-negative breast cancer. Cancer Res 79(16):4211–4226

    Article  CAS  Google Scholar 

  51. Heffernan-Stroud LA, Obeid LM (2013) Sphingosine kinase 1 in cancer. Adv Cancer Res 117:201–235

    Article  CAS  Google Scholar 

  52. Cuvillier O, Ader I, Bouquerel P, Brizuela L, Malavaud B, Mazerolles C, Rischmann P (2010) Activation of sphingosine kinase-1 in cancer: implications for therapeutic targeting. Curr Mol Pharmacol 3(2):53–65

    Article  CAS  Google Scholar 

  53. Snider AJ, Orr Gandy KA, Obeid LM (2010) Sphingosine kinase: role in regulation of bioactive sphingolipid mediators in inflammation. Biochimie 92(6):707–715

    Article  CAS  Google Scholar 

  54. Yuza K, Nakajima M, Nagahashi M, Tsuchida J, Hirose Y, Miura K, Tajima Y, Abe M, Sakimura K, Takabe K et al (2018) Different roles of sphingosine kinase 1 and 2 in pancreatic cancer progression. J Surg Res 232:186–194

    Article  CAS  Google Scholar 

  55. Kunkel GT, Maceyka M, Milstien S, Spiegel S (2013) Targeting the sphingosine-1-phosphate axis in cancer, inflammation and beyond. Nat Rev Drug Discov 12(9):688–702

    Article  CAS  Google Scholar 

  56. Pyne NJ, Adams DR, Pyne S (2017) Sphingosine kinase 2 in autoimmune/inflammatory disease and the development of sphingosine kinase 2 inhibitors. Trends Pharmacol Sci 38(7):581–591

    Article  CAS  Google Scholar 

  57. Song DD, Zhou JH, Sheng R (2018) Regulation and function of sphingosine kinase 2 in diseases. Histol Histopathol 33(5):433–445

    CAS  Google Scholar 

  58. van Echten-Deckert G, Alam S (2018) Sphingolipid metabolism - an ambiguous regulator of autophagy in the brain. Biol Chem 399(8):837–850

    Article  Google Scholar 

  59. Jafari N, Drury J, Morris AJ, Onono FO, Stevens PD, Gao T, Liu J, Wang C, Lee EY, Weiss HL et al (2019) De novo fatty acid synthesis-driven sphingolipid metabolism promotes metastatic potential of colorectal cancer. Mol Cancer Res 17(1):140–152

    Article  CAS  Google Scholar 

  60. Gao P, Smith CD (2011) Ablation of sphingosine kinase-2 inhibits tumor cell proliferation and migration. Mol Cancer Res 9(11):1509–1519

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank patients and their families for their support and participation in this study.

Funding

This work was supported by NCI R44CA199767 (SBIR award to CS), NCI R01CA197792 (YK), NCI R21CA234701 (YK), NCI P01CA203628 (BO) and Duke Cancer Center Start-up fund (YK). RedHill Biopharma Limited is the IND holder and sponsored the trial including data monitoring and CRO activities.

Author information

Authors and Affiliations

Authors

Contributions

YK: designed the experiments and wrote the manuscript; PS, DF, and SF: performed the correlative studies; CG, GL, ES, AG, SAT, and BNR: accrued patients for the studies; ZL: provided biostatistical support; BL and BO: provided important inputs; LM and VKB-Y: supported the clinical studies; CS: designed the clinical study, wrote and edited the manuscript, and the awardee of the NCI SBIR grant; TP: Medical Director for RedHill Biopharma, the sponsor of the clinical study, wrote and edited the manuscript, and provided input on the protocol and analysis of results.

Corresponding author

Correspondence to Yubin Kang.

Ethics declarations

Ethics approval and consent to participate

The study was conducted according to the Declaration of Helsinki and the International Council on Harmonization. The Duke Institutional Review Board (IRB) approved the protocol. All patients provided written informed consent.

Consent for publication

All authors approved the manuscript and the submission.

Competing interests

Yubin Kang received research funding from InCyte Corporation and a consultancy fee from Takeda Oncology USA and Sanofi Genzyme Corp. Charles Smith is the CEO and President, and Lynn Maines is employed by Apogee Biotechnology Corporation. Vered Katz Ben-Yair and Terry Plasse are consultants to RedHill Biopharma Limited. All other authors declare no competing conflicts of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 896 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kang, Y., Sundaramoorthy, P., Gasparetto, C. et al. Phase I study of opaganib, an oral sphingosine kinase 2-specific inhibitor, in relapsed and/or refractory multiple myeloma. Ann Hematol 102, 369–383 (2023). https://doi.org/10.1007/s00277-022-05056-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-022-05056-7

Keywords

  • Phase I trial
  • Multiple myeloma
  • Opaganib
  • ABC294640
  • Sphingosine kinase inhibitor
  • Maximal tolerated dose
  • Response