Skip to main content

Advertisement

Log in

Luspatercept (RAP-536) modulates oxidative stress without affecting mutation burden in myelodysplastic syndromes

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

In low-risk myelodysplastic syndrome (LR-MDS), erythropoietin (EPO) is widely used for the treatment of chronic anemia. However, initial response to EPO has time-limited effects. Luspatercept reduces red blood cell transfusion dependence in LR-MDS patients. Here, we investigated the molecular action of luspatercept (RAP-536) in an in vitro model of erythroid differentiation of MDS, and also in a in vivo PDX murine model with primary samples of MDS patients carrying or not SF3B1 mutation. In our in vitro model, RAP-536 promotes erythroid proliferation by increasing the number of cycling cells without any impact on apoptosis rates. RAP-536 promoted late erythroid precursor maturation while decreasing intracellular reactive oxygen species level. RNA sequencing of erythroid progenitors obtained under RAP-536 treatment showed an enrichment of genes implicated in positive regulation of response to oxidative stress and erythroid differentiation. In our PDX model, RAP-536 induces a higher hemoglobin level. RAP-536 did not modify variant allele frequencies in vitro and did not have any effect against leukemic burden in our PDX model. These results suggest that RAP-536 promotes in vivo and in vitro erythroid cell differentiation by decreasing ROS level without any remarkable impact on iron homeostasis and on mutated allele burden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, Bloomfield CD, Cazzola M, Vardiman JW (2016) The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127:2391–2405

    Article  CAS  PubMed  Google Scholar 

  2. Zeidan AM, Shallis RM, Wang R, Davidoff A, Ma X (2019) Epidemiology of myelodysplastic syndromes: why characterizing the beast is a prerequisite to taming it. Blood Rev 34:1–15

    Article  PubMed  Google Scholar 

  3. Greenberg P, Cox C, LeBeau MM, Fenaux P, Morel P, Sanz G, Sanz M, Vallespi T, Hamblin T, Oscier D, Ohyashiki K, Toyama K, Aul C, Mufti G, Bennett J (1997) International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 89:2079–2088

    Article  CAS  PubMed  Google Scholar 

  4. Greenberg PL, Tuechler H, Schanz J, Sanz G, Garcia-Manero G, Sole F, Bennett JM, Bowen D, Fenaux P, Dreyfus F, Kantarjian H, Kuendgen A, Levis A, Malcovati L, Cazzola M, Cermak J, Fonatsch C, Le Beau MM, Slovak ML, Krieger O, Luebbert M, Maciejewski J, Magalhaes SM, Miyazaki Y, Pfeilstocker M, Sekeres M, Sperr WR, Stauder R, Tauro S, Valent P, Vallespi T, van de Loosdrecht AA, Germing U, Haase D (2012) Revised international prognostic scoring system for myelodysplastic syndromes. Blood 120:2454–2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Santini V (2015) Anemia as the main manifestation of myelodysplastic syndromes. Semin Hematol 52:348–356

    Article  PubMed  Google Scholar 

  6. Sekeres MA (2011) Epidemiology, natural history, and practice patterns of patients with myelodysplastic syndromes in 2010. J Natl Compr Canc Netw 9:57–63

    Article  PubMed  Google Scholar 

  7. Balducci L (2006) Transfusion independence in patients with myelodysplastic syndromes: impact on outcomes and quality of life. Cancer 106:2087–2094

    Article  PubMed  Google Scholar 

  8. Stauder R, Yu G, Koinig KA, Bagguley T, Fenaux P, Symeonidis A, Sanz G, Cermak J, Mittelman M, Hellstrom-Lindberg E, Langemeijer S, Holm MS, Madry K, Malcovati L, Tatic A, Germing U, Savic A, van Marrewijk C, Guerci-Bresler A, Luno E, Droste J, Efficace F, Smith A, Bowen D, de Witte T (2018) Health-related quality of life in lower-risk MDS patients compared with age- and sex-matched reference populations: a European LeukemiaNet study. Leukemia 32:1380–1392

    Article  PubMed  PubMed Central  Google Scholar 

  9. Moyo V, Lefebvre P, Duh MS, Yektashenas B, Mundle S (2008) Erythropoiesis-stimulating agents in the treatment of anemia in myelodysplastic syndromes: a meta-analysis. Ann Hematol 87:527–536

    Article  CAS  PubMed  Google Scholar 

  10. Park S, Hamel JF, Toma A, Kelaidi C, Thepot S, Campelo MD, Santini V, Sekeres MA, Balleari E, Kaivers J, Sapena R, Gotze K, Muller-Thomas C, Beyne-Rauzy O, Stamatoullas A, Kotsianidis I, Komrokji R, Steensma DP, Fensterl J, Roboz GJ, Bernal T, Ramos F, Calabuig M, Guerci-Bresler A, Bordessoule D, Cony-Makhoul P, Cheze S, Wattel E, Rose C, Vey N, Gioia D, Ferrero D, Gaidano G, Cametti G, Pane F, Sanna A, Germing U, Sanz GF, Dreyfus F, Fenaux P (2017) Outcome of lower-risk patients with myelodysplastic syndromes without 5q deletion after failure of erythropoiesis-stimulating agents. J Clin Oncol 35:1591–1597

    Article  PubMed  Google Scholar 

  11. Zermati Y, Fichelson S, Valensi F, Freyssinier JM, Rouyer-Fessard P, Cramer E, Guichard J, Varet B, Hermine O (2000) Transforming growth factor inhibits erythropoiesis by blocking proliferation and accelerating differentiation of erythroid progenitors. Exp Hematol 28:885–894

    Article  CAS  PubMed  Google Scholar 

  12. Antebi YE, Linton JM, Klumpe H, Bintu B, Gong M, Su C, McCardell R, Elowitz MB (2017) Combinatorial signal perception in the BMP pathway. Cell 170:1184-1196.e1124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Neuzillet C, Tijeras-Raballand A, Cohen R, Cros J, Faivre S, Raymond E, de Gramont A (2015) Targeting the TGFbeta pathway for cancer therapy. Pharmacol Ther 147:22–31

    Article  CAS  PubMed  Google Scholar 

  14. Soderberg SS, Karlsson G, Karlsson S (2009) Complex and context dependent regulation of hematopoiesis by TGF-beta superfamily signaling. Ann N Y Acad Sci 1176:55–69

    Article  PubMed  Google Scholar 

  15. Blank U, Karlsson S (2011) The role of Smad signaling in hematopoiesis and translational hematology. Leukemia 25:1379–1388

    Article  CAS  PubMed  Google Scholar 

  16. Suragani RN, Cadena SM, Cawley SM, Sako D, Mitchell D, Li R, Davies MV, Alexander MJ, Devine M, Loveday KS, Underwood KW, Grinberg AV, Quisel JD, Chopra R, Pearsall RS, Seehra J, Kumar R (2014) Transforming growth factor-beta superfamily ligand trap ACE-536 corrects anemia by promoting late-stage erythropoiesis. Nat Med 20:408–414

    Article  CAS  PubMed  Google Scholar 

  17. Zhou L, McMahon C, Bhagat T, Alencar C, Yu Y, Fazzari M, Sohal D, Heuck C, Gundabolu K, Ng C, Mo Y, Shen W, Wickrema A, Kong G, Friedman E, Sokol L, Mantzaris I, Pellagatti A, Boultwood J, Platanias LC, Steidl U, Yan L, Yingling JM, Lahn MM, List A, Bitzer M, Verma A (2011) Reduced SMAD7 leads to overactivation of TGF-beta signaling in MDS that can be reversed by a specific inhibitor of TGF-beta receptor I kinase. Cancer Res 71:955–963

    Article  CAS  PubMed  Google Scholar 

  18. Arlet JB, Guillem F, Lamarque M, Dussiot M, Maciel T, Moura I, Hermine O, Courtois G (2016) Protein-based therapeutic for anemia caused by dyserythropoiesis. Expert Rev Proteomics 13:983–992

    Article  CAS  PubMed  Google Scholar 

  19. Attie KM, Allison MJ, McClure T, Boyd IE, Wilson DM, Pearsall AE, Sherman ML (2014) A phase 1 study of ACE-536, a regulator of erythroid differentiation, in healthy volunteers. Am J Hematol 89:766–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Platzbecker U, Germing U, Gotze KS, Kiewe P, Mayer K, Chromik J, Radsak M, Wolff T, Zhang X, Laadem A, Sherman ML, Attie KM, Giagounidis A (2017) Luspatercept for the treatment of anaemia in patients with lower-risk myelodysplastic syndromes (PACE-MDS): a multicentre, open-label phase 2 dose-finding study with long-term extension study. Lancet Oncol 18:1338–1347

    Article  CAS  PubMed  Google Scholar 

  21. Fenaux P, Platzbecker U, Mufti GJ, Garcia-Manero G, Buckstein R, Santini V, Diez-Campelo M, Finelli C, Cazzola M, Ilhan O, Sekeres MA, Falantes JF, Arrizabalaga B, Salvi F, Giai V, Vyas P, Bowen D, Selleslag D, DeZern AE, Jurcic JG, Germing U, Gotze KS, Quesnel B, Beyne-Rauzy O, Cluzeau T, Voso MT, Mazure D, Vellenga E, Greenberg PL, Hellstrom-Lindberg E, Zeidan AM, Ades L, Verma A, Savona MR, Laadem A, Benzohra A, Zhang J, Rampersad A, Dunshee DR, Linde PG, Sherman ML, Komrokji RS, List AF (2020) Luspatercept in patients with lower-risk myelodysplastic syndromes. N Engl J Med 382:140–151

    Article  CAS  PubMed  Google Scholar 

  22. Wobus M, Mies A, Asokan N, Oelschlagel U, Mobus K, Winter S, Cross M, Weidner H, Rauner M, Hofbauer LC, Bornhauser M, Platzbecker U (2021) Luspatercept restores SDF-1-mediated hematopoietic support by MDS-derived mesenchymal stromal cells. Leukemia 35:2936–2947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hu J, Liu J, Xue F, Halverson G, Reid M, Guo A, Chen L, Raza A, Galili N, Jaffray J, Lane J, Chasis JA, Taylor N, Mohandas N, An X (2013) Isolation and functional characterization of human erythroblasts at distinct stages: implications for understanding of normal and disordered erythropoiesis in vivo. Blood 121:3246–3253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Meunier M, Ancelet S, Lefebvre C, Arnaud J, Garrel C, Pezet M, Wang Y, Faure P, Szymanski G, Duployez N, Preudhomme C, Biard D, Polack B, Cahn JY, Moulis JM, Park S (2017) Reactive oxygen species levels control NF-kappaB activation by low dose deferasirox in erythroid progenitors of low risk myelodysplastic syndromes. Oncotarget 8:105510–105524

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zheng QQ, Zhao YS, Guo J, Zhao SD, Song LX, Fei CM, Zhang Z, Li X, Chang CK (2017) Iron overload promotes erythroid apoptosis through regulating HIF-1a/ROS signaling pathway in patients with myelodysplastic syndrome. Leuk Res 58:55–62

    Article  CAS  PubMed  Google Scholar 

  26. Meunier M, Dussiau C, Mauz N, Alary AS, Lefebvre C, Szymanski G, Pezet M, Blanquet F, Kosmider O, Park S (2018) Molecular dissection of engraftment in a xenograft model of myelodysplastic syndromes. Oncotarget 9:14993–15000

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chan LSA, Gu LC, Leitch HA, Wells RA (2021) Intracellular ROS profile in hematopoietic progenitors of MDS patients: association with blast count and iron overload. Hematology 26:88–95

    Article  CAS  PubMed  Google Scholar 

  28. Park S, Kosmider O, Maloisel F, Drenou B, Chapuis N, Lefebvre T, Karim Z, Puy H, Alary AS, Ducamp S, Verdier F, Bouilloux C, Rousseau A, Jacob MC, Debliquis A, Charpentier A, Gyan E, Anglaret B, Leyronnas C, Corm S, Slama B, Cheze S, Laribi K, Ame S, Rose C, Lachenal F, Toma A, Pica GM, Carre M, Garban F, Mariette C, Cahn JY, Meunier M, Herault O, Fenaux P, Wagner-Ballon O, Bardet V, Dreyfus F, Fontenay M (2019) Dyserythropoiesis evaluated by the RED score and hepcidin:ferritin ratio predicts response to erythropoietin in lower-risk myelodysplastic syndromes. Haematologica 104:497–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kerbauy DB, Deeg HJ (2007) Apoptosis and antiapoptotic mechanisms in the progression of myelodysplastic syndrome. Exp Hematol 35:1739–1746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bouscary D, De Vos J, Guesnu M, Jondeau K, Viguier F, Melle J, Picard F, Dreyfus F, Fontenay-Roupie M (1997) Fas/Apo-1 (CD95) expression and apoptosis in patients with myelodysplastic syndromes. Leukemia 11:839–845

    Article  CAS  PubMed  Google Scholar 

  31. Claessens YE, Park S, Dubart-Kupperschmitt A, Mariot V, Garrido C, Chretien S, Dreyfus F, Lacombe C, Mayeux P, Fontenay M (2005) Rescue of early-stage myelodysplastic syndrome-deriving erythroid precursors by the ectopic expression of a dominant-negative form of FADD. Blood 105:4035–4042

    Article  CAS  PubMed  Google Scholar 

  32. Suragani RN, Cawley SM, Li R, Wallner S, Alexander MJ, Mulivor AW, Gardenghi S, Rivella S, Grinberg AV, Pearsall RS, Kumar R (2014) Modified activin receptor IIB ligand trap mitigates ineffective erythropoiesis and disease complications in murine beta-thalassemia. Blood 123:3864–3872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chai X, Li D, Cao X, Zhang Y, Mu J, Lu W, Xiao X, Li C, Meng J, Chen J, Li Q, Wang J, Meng A, Zhao M (2015) ROS-mediated iron overload injures the hematopoiesis of bone marrow by damaging hematopoietic stem/progenitor cells in mice. Sci Rep 5:10181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hartmann J, Braulke F, Sinzig U, Wulf G, Maas JH, Konietschke F, Haase D (2013) Iron overload impairs proliferation of erythroid progenitors cells (BFU-E) from patients with myelodysplastic syndromes. Leuk Res 37:327–332

    Article  CAS  PubMed  Google Scholar 

  35. Taoka K, Kumano K, Nakamura F, Hosoi M, Goyama S, Imai Y, Hangaishi A, Kurokawa M (2012) The effect of iron overload and chelation on erythroid differentiation. Int J Hematol 95:149–159

    Article  CAS  PubMed  Google Scholar 

  36. Nicolas G, Bennoun M, Devaux I, Beaumont C, Grandchamp B, Kahn A, Vaulont S (2001) Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proc Natl Acad Sci U S A 98:8780–8785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pigeon C, Ilyin G, Courselaud B, Leroyer P, Turlin B, Brissot P, Loreal O (2001) A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J Biol Chem 276:7811–7819

    Article  CAS  PubMed  Google Scholar 

  38. Wang CY, Babitt JL (2016) Hepcidin regulation in the anemia of inflammation. Curr Opin Hematol 23:189–197

    Article  PubMed  PubMed Central  Google Scholar 

  39. Besson-Fournier C, Gineste A, Latour C, Gourbeyre O, Meynard D, Martin P, Oswald E, Coppin H, Roth MP (2017) Hepcidin upregulation by inflammation is independent of Smad1/5/8 signaling by activin B. Blood 129:533–536

    Article  CAS  PubMed  Google Scholar 

  40. Merlevede J, Droin N, Qin T, Meldi K, Yoshida K, Morabito M, Chautard E, Auboeuf D, Fenaux P, Braun T, Itzykson R, de Botton S, Quesnel B, Commes T, Jourdan E, Vainchenker W, Bernard O, Pata-Merci N, Solier S, Gayevskiy V, Dinger ME, Cowley MJ, Selimoglu-Buet D, Meyer V, Artiguenave F, Deleuze JF, Preudhomme C, Stratton MR, Alexandrov LB, Padron E, Ogawa S, Koscielny S, Figueroa M, Solary E (2016) Mutation allele burden remains unchanged in chronic myelomonocytic leukaemia responding to hypomethylating agents. Nat Commun 7:10767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Flow cytometry data were obtained on the “Plateforme de cytométrie” of the CHU Grenoble Alpes at the Institute of Biology and Pathology. We thank the zootechnicians of the PHTA facility for animal housing and care.

Funding

We have received a grant from Celgene for this work.

Author information

Authors and Affiliations

Authors

Contributions

MM and SP wrote the paper. SP supervised the study design. MM, NJ, and JZ performed the in vitro testing. MM engineered the PDX mice model. ND and ZK contributed to iron metabolism measurements in the PDX model. CF and OK performed the molecular testing in the PDX model. ST did the NGS in the in vitro model. FC and SR analyzed the RNA sequencing data.

Corresponding authors

Correspondence to Meunier Mathieu or Sophie Park.

Ethics declarations

Ethical approval

All bone marrow samples were collected after written consent in a protocol approval by the institutional ethical review board. Biological samples were stored at CHUGA Biological Resource Center (accreditation number AC 2014–2094, BRIF BB-0033–00069). All applicable international, national, and institutional guidelines for the care and use of animals were followed. The study was approved by our local animals ethical committee and by the French “Ministère de l’enseignement supérieur, de la recherche et de l’innovation.”

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 604 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathieu, M., Friedrich, C., Ducrot, N. et al. Luspatercept (RAP-536) modulates oxidative stress without affecting mutation burden in myelodysplastic syndromes. Ann Hematol 101, 2633–2643 (2022). https://doi.org/10.1007/s00277-022-04993-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-022-04993-7

Keywords

Navigation