Skip to main content

Advertisement

Log in

Peripherally inserted central venous catheters decrease central line-associated bloodstream infections and change microbiological epidemiology in adult hematology unit: a propensity score-adjusted analysis

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

A Correction to this article was published on 12 July 2022

This article has been updated

Abstract

Peripherally inserted central venous catheters (PICCs) have a potential advantage in preventing central line-associated bloodstream infection (CLABSI) compared with the centrally inserted ones (CICCs). However, due to a limited number of studies with insufficient statistical evaluation, the superiority of PICCs is difficult to be generalized in adult hematology unit. We conducted a single-center retrospective study and compared the risk of CLABSI between 472 CICCs and 557 PICCs inserted in adult patients with hematological disorders through conventional multivariate models and a propensity score-adjusted analysis. The overall CLABSI incidence in CICCs and PICCs was 5.11 and 3.29 per 1000 catheter days (P = 0.024). The multivariate Cox regression analysis (hazard ratio [HR]: 0.48; 95% confidence interval [CI]: 0.31–0.75; P = 0.001) and Fine-Gray subdistribution analysis (HR: 0.59; 95% CI: 0.37–0.93; P = 0.023) demonstrated that PICC was independently associated with a reduced risk of CLABSI. Moreover, the stabilized inverse probability of treatment weighting analysis, which further reduced the selection bias between CICCs and PICCs, showed that PICCs significantly prevented CLABSI (HR: 0.58; 95% CI: 0.35–0.94; P = 0.029). Microbiologically, PICCs showed a significant decrease in gram-positive cocci (P = 0.001) and an increase in gram-positive bacilli (P = 0.002) because of a remarkable reduction in Staphylococci and increase in Corynebacterium species responsible for CLABSI. Our study confirmed that PICC was a superior alternative to CICC in preventing CLABSI in the adult hematology unit, while it posed a microbiological shift in local epidemiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The dataset analyzed in the current study is available from the corresponding authors on reasonable request.

Change history

References

  1. Blot SI, Depuydt P, Annemans L, Benoit D, Hoste E, De Waele JJ, Decruyenaere J, Vogelaers D, Colardyn F, Vandewoude KH (2005) Clinical and economic outcomes in critically ill patients with nosocomial catheter-related bloodstream infections. Clin Infect Dis 41:1591–1598. https://doi.org/10.1086/497833

    Article  PubMed  Google Scholar 

  2. Stone PW, Braccia D, Larson E (2005) Systematic review of economic analyses of health care-associated infections. Am J Infect Control 33:501–509. https://doi.org/10.1016/j.ajic.2005.04.246

    Article  PubMed  Google Scholar 

  3. Higuera F, Rangel-Frausto MS, Rosenthal VD, Soto JM, Castañon J, Franco G, Tabal-Galan N, Ruiz J, Duarte P, Graves N (2007) Attributable cost and length of stay for patients with central venous catheter-associated bloodstream infection in Mexico City intensive care units: a prospective, matched analysis. Infect Control Hosp Epidemiol 28:31–35. https://doi.org/10.1086/510812

    Article  PubMed  Google Scholar 

  4. Chopra V, O’Horo JC, Rogers MA, Maki DG, Safdar N (2013) The risk of bloodstream infection associated with peripherally inserted central catheters compared with central venous catheters in adults: a systematic review and meta-analysis. Infect Control Hosp Epidemiol 34:908–918. https://doi.org/10.1086/671737

    Article  PubMed  Google Scholar 

  5. Mollee P, Jones M, Stackelroth J, van Kuilenburg R, Joubert W, Faoagali J, Looke D, Harper J, Clements A (2011) Catheter-associated bloodstream infection incidence and risk factors in adults with cancer: a prospective cohort study. J Hosp Infect 78:26–30. https://doi.org/10.1016/j.jhin.2011.01.018

    Article  CAS  PubMed  Google Scholar 

  6. Sakai T, Kohda K, Konuma Y, Hiraoka Y, Ichikawa Y, Ono K, Horiguchi H, Tatekoshi A, Takada K, Iyama S, Kato J (2014) A role for peripherally inserted central venous catheters in the prevention of catheter-related blood stream infections in patients with hematological malignancies. Int J Hematol 100:592–598. https://doi.org/10.1007/s12185-014-1677-9

    Article  PubMed  Google Scholar 

  7. Fracchiolla NS, Todisco E, Bilancia A, Gandolfi S, Orofino N, Guidotti F, Mancini V, Marbello L, Assanelli A, Bernardi M, Santoro A, Cairoli R, Consonni D, Cortelezzi A (2017) Clinical management of peripherally inserted central catheters compared to conventional central venous catheters in patients with hematological malignancies: a large multicenter study of the REL GROUP (Rete Ematologica Lombarda - Lombardy Hematologic Network, Italy). Am J Hematol 92:E656–E659. https://doi.org/10.1002/ajh.24903

    Article  PubMed  Google Scholar 

  8. Lee JH, Kim ET, Shim DJ, Kim IJ, Byeon JH, Lee IJ, Kim HB, Choi YJ, Lee JH (2019) Prevalence and predictors of peripherally inserted central catheter-associated bloodstream infections in adults: a multicenter cohort study. PLoS ONE 14:e0213555. https://doi.org/10.1371/journal.pone.0213555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Picardi M, Della Pepa R, Cerchione C, Pugliese N, Mortaruolo C, Trastulli F, Giordano C, Grimaldi F, Zacheo I, Raimondo M, Chiurazzi F, Pane F (2019) A frontline approach with peripherally inserted versus centrally inserted central venous catheters for remission induction chemotherapy phase of acute myeloid leukemia: a randomized comparison. Clin Lymphoma Myeloma Leuk 19:e184–e194. https://doi.org/10.1016/j.clml.2018.12.008

    Article  PubMed  Google Scholar 

  10. Baier C, Linke L, Eder M, Schwab F, Chaberny IF, Vonberg RP, Ebadi E (2020) Incidence, risk factors and healthcare costs of central line-associated nosocomial bloodstream infections in hematologic and oncologic patients. PLoS ONE 15:e0227772. https://doi.org/10.1371/journal.pone.0227772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mollee P, Okano S, Abro E, Looke D, Kennedy G, Harper J, Clouston J, Van Kuilenburg R, Geary A, Joubert W, Eastgate M, Jones M (2020) Catheter-associated bloodstream infections in adults with cancer: a prospective randomized controlled trial. J Hosp Infect 106:335–342. https://doi.org/10.1016/j.jhin.2020.07.021

    Article  CAS  PubMed  Google Scholar 

  12. Hashimoto Y, Hosoda R, Omura H, Tanaka T (2021) Catheter-related bloodstream infection associated with multiple insertions of the peripherally inserted central catheter in patients with hematological disorders. Sci Rep 11:12209. https://doi.org/10.1038/s41598-021-91749-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Safdar N, Maki DG (2005) Risk of catheter-related bloodstream infection with peripherally inserted central venous catheters used in hospitalized patients. Chest 128:489–495. https://doi.org/10.1378/chest.128.2.489

    Article  PubMed  Google Scholar 

  14. Maki DG, Kluger DM, Crnich CJ (2006) The risk of bloodstream infection in adults with different intravascular devices: a systematic review of 200 published prospective studies. Mayo Clin Proc 81:1159–1171. https://doi.org/10.4065/81.9.1159

    Article  PubMed  Google Scholar 

  15. Mavrovounis G, Mermiri M, Chatzis DG, Pantazopoulos I (2020) Peripherally inserted central catheter lines for intensive care unit and onco-hematologic patients: a systematic review and meta-analysis. Heart Lung 49:922–933. https://doi.org/10.1016/j.hrtlng.2020.07.008

    Article  PubMed  Google Scholar 

  16. Luo X, Guo Y, Yu H, Li S, Yin X (2017) Effectiveness, safety and comfort of StatLock securement for peripherally-inserted central catheters: a systematic review and meta-analysis. Nurs Health Sci 19:403–413. https://doi.org/10.1111/nhs.12361

    Article  PubMed  Google Scholar 

  17. Marschall J, Mermel LA, Fakih M, Hadaway L, Kallen A, O’Grady NP, Pettis AM, Rupp ME, Sandora T, Maragakis LL, Yokoe DS, Society for Healthcare Epidemiology of A (2014) Strategies to prevent central line-associated bloodstream infections in acute care hospitals: 2014 update. Infect Control Hosp Epidemiol 35:753–771. https://doi.org/10.1086/676533

    Article  Google Scholar 

  18. Horan TC, Andrus M, Dudeck MA (2008) CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control 36:309–332. https://doi.org/10.1016/j.ajic.2008.03.002

    Article  PubMed  Google Scholar 

  19. Austin PC, Stuart EA (2015) Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies. Stat Med 34:3661–3679. https://doi.org/10.1002/sim.6607

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kanda Y (2013) Investigation of the freely available easy-to-use software “EZR” for medical statistics. Bone Marrow Transplant 48:452–458. https://doi.org/10.1038/bmt.2012.244

    Article  CAS  PubMed  Google Scholar 

  21. Austin PC, Lee DS, Fine JP (2016) Introduction to the analysis of survival data in the presence of competing risks. Circulation 133:601–609. https://doi.org/10.1161/CIRCULATIONAHA.115.017719

    Article  PubMed  PubMed Central  Google Scholar 

  22. Carter JH, Langley JM, Kuhle S, Kirkland S (2016) Risk factors for central venous catheter-associated bloodstream infection in pediatric patients: a cohort study. Infect Control Hosp Epidemiol 37:939–945. https://doi.org/10.1017/ice.2016.83

    Article  PubMed  Google Scholar 

  23. Weber S, von Cube M, Sommer H, Wolkewitz M (2016) Necessity of a competing risk approach in risk factor analysis of central line-associated bloodstream infection. Infect Control Hosp Epidemiol 37:1255–1257. https://doi.org/10.1017/ice.2016.166

    Article  PubMed  Google Scholar 

  24. Kuhle S, Carter JH, Kirkland S, Langley JM, Maguire B, Smith B (2017) Reply to Weber, von Cube, Sommer, Wolkewitz: Necessity of a competing risk approach in risk factor analysis of central-line-associated bloodstream infection. Infect Control Hosp Epidemiol 38:511. https://doi.org/10.1017/ice.2016.331

    Article  PubMed  Google Scholar 

  25. Schears GJ, Ferko N, Syed I, Arpino JM, Alsbrooks K (2021) Peripherally inserted central catheters inserted with current best practices have low deep vein thrombosis and central line-associated bloodstream infection risk compared with centrally inserted central catheters: a contemporary meta-analysis. J Vasc Access 22:9–25. https://doi.org/10.1177/1129729820916113

    Article  PubMed  Google Scholar 

  26. Skowron K, Bauza-Kaszewska J, Kraszewska Z, Wiktorczyk-Kapischke N, Grudlewska-Buda K, Kwiecinska-Pirog J, Walecka-Zacharska E, Radtke L, Gospodarek-Komkowska E (2021) Human skin microbiome: impact of intrinsic and extrinsic factors on skin microbiota. Microorganisms 9:543. https://doi.org/10.3390/microorganisms9030543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Waterhouse J, Bandisode V, Brandon D, Olson M, Docherty SL (2014) Evaluation of the use of a stabilization device to improve the quality of care in patients with peripherally inserted central catheters. AACN Adv Crit Care 25:213–220. https://doi.org/10.1097/nci.0000000000000026

    Article  PubMed  Google Scholar 

  28. Pronovost P, Needham D, Berenholtz S, Sinopoli D, Chu H, Cosgrove S, Sexton B, Hyzy R, Welsh R, Roth G, Bander J, Kepros J, Goeschel C (2006) An intervention to decrease catheter-related bloodstream infections in the ICU. N Engl J Med 355:2725–2732. https://doi.org/10.1056/NEJMoa061115

    Article  CAS  PubMed  Google Scholar 

  29. Ista E, van der Hoven B, Kornelisse RF, van der Starre C, Vos MC, Boersma E, Helder OK (2016) Effectiveness of insertion and maintenance bundles to prevent central-line-associated bloodstream infections in critically ill patients of all ages: a systematic review and meta-analysis. Lancet Infect Dis 16:724–734. https://doi.org/10.1016/s1473-3099(15)00409-0

    Article  PubMed  Google Scholar 

  30. Ray-Barruel G, Xu H, Marsh N, Cooke M, Rickard CM (2019) Effectiveness of insertion and maintenance bundles in preventing peripheral intravenous catheter-related complications and bloodstream infection in hospital patients: a systematic review. Infect Dis Health 24:152–168. https://doi.org/10.1016/j.idh.2019.03.001

    Article  PubMed  Google Scholar 

  31. Woods-Hill CZ, Papili K, Nelson E, Lipinski K, Shea J, Beidas R, Lane-Fall M (2021) Harnessing implementation science to optimize harm prevention in critically ill children: A pilot study of bedside nurse CLABSI bundle performance in the pediatric intensive care unit. Am J Infect Control 49:345–351. https://doi.org/10.1016/j.ajic.2020.08.019

    Article  CAS  PubMed  Google Scholar 

  32. Lin KY, Cheng A, Chang YC, Hung MC, Wang JT, Sheng WH, Hseuh PR, Chen YC, Chang SC (2017) Central line-associated bloodstream infections among critically-ill patients in the era of bundle care. J Microbiol Immunol Infect 50:339–348. https://doi.org/10.1016/j.jmii.2015.07.001

    Article  PubMed  Google Scholar 

  33. Lendak D, Puerta-Alcalde P, Moreno-Garcia E, Chumbita M, Garcia-Pouton N, Cardozo C, Morata L, Suarez-Lledo M, Hernandez-Meneses M, Ghiglione L, Marco F, Martinez JA, Mensa J, Urosevic I, Soriano A, Garcia-Vidal C (2021) Changing epidemiology of catheter-related bloodstream infections in neutropenic oncohematological patients. PLoS ONE 16:e0251010. https://doi.org/10.1371/journal.pone.0251010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Puerta-Alcalde P, Cardozo C, Marco F, Suarez-Lledo M, Moreno E, Morata L, Fernandez-Aviles F, Gutierrez-Garcia G, Chumbita M, Rosinol L, Martinez JA, Martinez C, Mensa J, Urbano A, Rovira M, Soriano A, Garcia-Vidal C (2020) Changing epidemiology of bloodstream infection in a 25-years hematopoietic stem cell transplant program: current challenges and pitfalls on empiric antibiotic treatment impacting outcomes. Bone Marrow Transplant 55:603–612. https://doi.org/10.1038/s41409-019-0701-3

    Article  PubMed  Google Scholar 

  35. Rodriguez-Creixems M, Munoz P, Martin-Rabadan P, Cercenado E, Guembe M, Bouza E (2013) Evolution and aetiological shift of catheter-related bloodstream infection in a whole institution: the microbiology department may act as a watchtower. Clin Microbiol Infect 19:845–851. https://doi.org/10.1111/1469-0691.12050

    Article  CAS  PubMed  Google Scholar 

  36. Marcos M, Soriano A, Inurrieta A, Martinez JA, Romero A, Cobos N, Hernandez C, Almela M, Marco F, Mensa J (2011) Changing epidemiology of central venous catheter-related bloodstream infections: increasing prevalence of Gram-negative pathogens. J Antimicrob Chemother 66:2119–2125. https://doi.org/10.1093/jac/dkr231

    Article  CAS  PubMed  Google Scholar 

  37. Abe M, Kimura M, Maruyama H, Watari T, Ogura S, Takagi S, Uchida N, Otsuka Y, Taniguchi S, Araoka H (2021) Clinical characteristics and drug susceptibility patterns of Corynebacterium species in bacteremic patients with hematological disorders. Eur J Clin Microbiol Infect Dis 40:2095–2104. https://doi.org/10.1007/s10096-021-04257-8

    Article  CAS  PubMed  Google Scholar 

  38. Silva-Santana G, Silva CMF, Olivella JGB, Silva IF, Fernandes LMO, Sued-Karam BR, Santos CS, Souza C, Mattos-Guaraldi AL (2021) Worldwide survey of Corynebacterium striatum increasingly associated with human invasive infections, nosocomial outbreak, and antimicrobial multidrug-resistance, 1976–2020. Arch Microbiol 203:1863–1880. https://doi.org/10.1007/s00203-021-02246-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yamamuro R, Hosokawa N, Otsuka Y, Osawa R (2021) Clinical characteristics of Corynebacterium bacteremia caused by different species Japan 2014–2020. Emerg Infect Dis 27(12):2981–2987. https://doi.org/10.3201/eid2712.210473.

    Article  PubMed Central  Google Scholar 

  40. Barberis CM, Sandoval E, Rodriguez CH, Ramírez MS, Famiglietti A, Almuzara M, Vay C (2018) Comparison between disk diffusion and agar dilution methods to determine in vitro susceptibility of Corynebacterium spp. clinical isolates and update of their susceptibility. J Glob Antimicrob Resist 14:246–252. https://doi.org/10.1016/j.jgar.2018.05.009

    Article  PubMed  Google Scholar 

  41. See I, Iwamoto M, Allen-Bridson K, Horan T, Magill SS, Thompson ND (2013) Mucosal barrier injury laboratory-confirmed bloodstream infection: results from a field test of a new National Healthcare Safety Network definition. Infect Control Hosp Epidemiol 34:769–776. https://doi.org/10.1086/671281

    Article  PubMed  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

YN and MI analyzed the clinical data and drafted the manuscript, figures, and tables. MI and MS formed an infection control team with specific qualifications for central line management and collected clinical, microbiological, and CLABSI data. KS, NY, MT, MY, TY, YH, TN, and TY interpreted data and revised the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Michinori Shirano.

Ethics declarations

Ethics approval

The Ethics Committee of Osaka City General Hospital approved the protocol of this study (protocol file number: 2009096). All procedures were followed in accordance with the ethical standards of the responsible committee and the Helsinki Declaration.

Consent to participate

Informed consent from participants was obtained in the form of opt-outs on the institutional website because this study was retrospective and used anonymized data.

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: This article was originally published with an incorrect table presentation in table 3.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 237 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakaya, Y., Imasaki, M., Shirano, M. et al. Peripherally inserted central venous catheters decrease central line-associated bloodstream infections and change microbiological epidemiology in adult hematology unit: a propensity score-adjusted analysis. Ann Hematol 101, 2069–2077 (2022). https://doi.org/10.1007/s00277-022-04908-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-022-04908-6

Keywords

Navigation