Skip to main content

Advertisement

Log in

Significance of alveolar nitric oxide concentration in the airway of patients with organizing pneumonia after allogeneic hematopoietic stem cell transplantation

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Organizing pneumonia (OP) is a complication of allogeneic hematopoietic stem cell transplantation (allo-HSCT) and a manifestation of peripheral airway/alveolar inflammation. Recently, alveolar nitric oxide concentration (Calv) has been revealed as a noninvasive marker of peripheral airway inflammation; however, whether Calv levels are associated with OP and peripheral airway in patients after allo-HSCT remains unclear. Herein, we evaluated whether Calv levels could reflect the presence of OP and structural airway changes in patients after allo-HSCT. We measured the eNO levels of 38 patients (6 with OP and 32 without OP) who underwent allo-HSCT. Three-dimensional computed tomography (CT) analysis of the airway was performed in 19 patients. We found that in patients with OP, Calv levels were significantly higher than in those without OP (10.6 vs. 5.5 ppb, p < 0.01). Receiver-operating characteristic analyses revealed a Calv cut-off value for OP detection of 10.2 ppb. No significant differences in the patient characteristics, except for the presence of OP (p < 0.01), were noted between the two groups stratified by the Calv cut-off value. Three-dimensional CT images of the airway revealed gradually increasing positive correlations between Calv levels and airway wall area of the third-, fourth-, and fifth-generation bronchi (r = 0.20, 0.31, 0.38; p = 0.42, 0.19, 0.038, respectively), indicating that Calv levels are strongly correlated with the wall thickness of the distal bronchi. Our results suggest that the Calv level may be a useful noninvasive detectable marker for OP after an allo-HSCT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Yoshihara S, Yanik G, Cooke KR, Mineishi S (2007) Bronchiolitis obliterans syndrome (BOS), bronchiolitis obliterans organizing pneumonia (BOOP), and other late-onset noninfectious pulmonary complications following allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 13:749–759. https://doi.org/10.1016/j.bbmt.2007.05.001

    Article  PubMed  Google Scholar 

  2. Jinta M, Ohashi K, Ohta T, Ieki R, Abe K, Kamata N, Akiyama H, Sakamaki H (2007) Clinical features of allogeneic hematopoietic stem cell transplantation-associated organizing pneumonia. Bone Marrow Transplant 40:465–472. https://doi.org/10.1038/sj.bmt.1705768

    Article  CAS  PubMed  Google Scholar 

  3. Nakasone H, Onizuka M, Suzuki N, Fujii N, Taniguchi S, Kakihana K, Ogawa H, Miyamura K, Eto T, Sakamaki H, Yabe H, Morishima Y, Kato K, Suzuki R, Fukuda T (2013) Pre-transplant risk factors for cryptogenic organizing pneumonia/bronchiolitis obliterans organizing pneumonia after hematopoietic cell transplantation. Bone Marrow Transplant 48:1317–1323. https://doi.org/10.1038/bmt.2013.116

    Article  CAS  PubMed  Google Scholar 

  4. Adachi Y, Ozeki K, Ukai S, Sagou K, Fukushima N, Kohno A (2019) Patterns of onset and outcome of cryptogenic organizing pneumonia after allogeneic hematopoietic stem cell transplantation. Int J Hematol 109:700–710. https://doi.org/10.1007/s12185-019-02643-9

    Article  PubMed  Google Scholar 

  5. Cordier JF (2006) Cryptogenic organising pneumonia. Eur Respir J 28:422–446. https://doi.org/10.1183/09031936.06.00013505

    Article  PubMed  Google Scholar 

  6. Matsunaga K, Kuwahira I, Hanaoka M, Saito J, Tsuburai T, Fukunaga K, Matsumoto H, Sugiura H, Ichinose M, Japanese Respiratory Society Assembly on Pulmonary Physiology (2021) An official JRS statement: the principles of fractional exhaled nitric oxide (FeNO) measurement and interpretation of the results in clinical practice. Respir Investig 59:34–52. https://doi.org/10.1016/j.resinv.2020.05.006

    Article  PubMed  Google Scholar 

  7. Munakata M (2012) Exhaled nitric oxide (FeNO) as a non-invasive marker of airway inflammation. Allergol Int 61:365–372. https://doi.org/10.2332/allergolint.12-RAI-0461

    Article  CAS  PubMed  Google Scholar 

  8. Puckett JL, Taylor RWE, Leu SY, Guijon OL, Aledia AS, Galant SP, George SC (2010) Clinical patterns in asthma based on proximal and distal airway nitric oxide categories. Respir Res 11:47. https://doi.org/10.1186/1465-9921-11-47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tsoukias NM (1985) George SC (1998) A two-compartment model of pulmonary nitric oxide exchange dynamics. J Appl Physiol 85:653–666. https://doi.org/10.1152/jappl.1998.85.2.653

    Article  Google Scholar 

  10. Hirano T, Matsunaga K, Sugiura H, Minakata Y, Koarai A, Akamatsu K, Ichikawa T, Furukawa K, Ichinose M (2013) Relationship between alveolar nitric oxide concentration in exhaled air and small airway function in COPD. J Breath Res 7:046002. https://doi.org/10.1088/1752-7155/7/4/046002

    Article  CAS  PubMed  Google Scholar 

  11. Hayton C, Terrington D, Wilson AM, Chaudhuri N, Leonard C, Fowler SJ (2019) Breath biomarkers in idiopathic pulmonary fibrosis: a systematic review. Respir Res 20:7. https://doi.org/10.1186/s12931-019-0971-8

    Article  PubMed  PubMed Central  Google Scholar 

  12. Oishi K, Hirano T, Suetake R, Ohata S, Yamaji Y, Ito K, Edakuni N, Matsunaga K (2017) Exhaled nitric oxide measurements in patients with acute-onset interstitial lung disease. J Breath Res 11:036001. https://doi.org/10.1088/1752-7163/aa6c4b

    Article  CAS  PubMed  Google Scholar 

  13. Mehrjardi MZ, Kahkouee S, Pourabdollah M (2017) Radio-pathological correlation of organizing pneumonia (OP): a pictorial review. Br J Radiol 90:20160723

    Article  Google Scholar 

  14. de Blic J, Tillie-Leblond I, Emond S, Mahut B, Dang Duy TL, Scheinmann P (2005) High-resolution computed tomography scan and airway remodeling in children with severe asthma. J Allergy Clin Immunol 116:750–754. https://doi.org/10.1016/j.jaci.2005.07.009

    Article  PubMed  Google Scholar 

  15. Nishimoto K, Karayama M, Inui N, Mori K, Kono M, Hozumi H, Suzuki Y, Furuhashi K, Enomoto N, Fujisawa T, Nakamura Y, Watanabe H, Suda T (2017) Relationship between fraction of exhaled nitric oxide and airway morphology assessed by three-dimensional CT analysis in asthma. Sci Rep 7:10187. https://doi.org/10.1038/s41598-017-10504-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Przepiorka D, Weisdorf D, Martin P, Klingemann HG, Beatty P, Hows J, Thomas ED (1994) Bone Marrow Transplant 1995; 15 Consens Conference on Acute GVHD Grading, pp 825–828

  17. Jagasia MH, Greinix HT, Arora M, Williams KM, Wolff D, Cowen EW, Palmer J, Weisdorf D, Treister NS, Cheng GS, Kerr H, Stratton P, Duarte RF, McDonald GB, Inamoto Y, Vigorito A, Arai S, Datiles MB, Jacobsohn D, Heller T, Kitko CL, Mitchell SA, Martin PJ, Shulman H, Wu RS, Cutler CS, Vogelsang GB, Lee SJ, Pavletic SZ, Flowers ME (2015) National Institutes of Health consensus development Project on Criteria for Clinical Trials in chronic graft-versus-host disease: I. The 2014 Diagnosis and Staging Working Group report. The 2014 Diagnosis and Staging Working Group report. Biol Blood Marrow Transplant 21:389-401.e1. https://doi.org/10.1016/j.bbmt.2014.12.001

    Article  PubMed  Google Scholar 

  18. Brownback KR, Frey JW, Abhyankar S (2019) Bronchoscopic features, associations, and outcomes of organizing pneumonia following allogeneic hematopoietic stem cell transplantation. Ann Hematol 98:2187–2195. https://doi.org/10.1007/s00277-019-03746-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, Crapo R, Enright P, van der Grinten CP, Gustafsson P, Jensen R, Johnson DC, MacIntyre N, McKay R, Navajas D, Pedersen OF, Pellegrino R, Viegi G, Wanger J, ATS/ERS Task Force (2005) Standardisation of spirometry. Eur Respir J 26:319–338. https://doi.org/10.1183/09031936.05.00034805

    Article  CAS  PubMed  Google Scholar 

  20. Cotes JE, Dabbs JM, Elwood PC, Hall AM, McDonald A, Saunders MJ (1972) Iron-deficiency anaemia: its effect on transfer factor for the lung (diffusiong capacity) and ventilation and cardiac frequency during sub-maximal exercise. Clin Sci 42:325–335. https://doi.org/10.1042/cs0420325

    Article  CAS  PubMed  Google Scholar 

  21. Karayama M, Inui N, Mori K, Kono M, Hozumi H, Suzuki Y, Furuhashi K, Hashimoto D, Enomoto N, Fujisawa T, Nakamura Y, Watanabe H, Suda T (2017) Respiratory impedance is correlated with morphological changes in the lungs on three-dimensional CT in patients with COPD. Sci Rep 7:41709. https://doi.org/10.1038/srep41709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kanda Y (2013) Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant 48:452–458. https://doi.org/10.1038/bmt.2012.244

    Article  CAS  PubMed  Google Scholar 

  23. Högman M, Thornadtsson A, Liv P, Hua-Huy T, Dinh-Xuan AT, Tufvesson E, Dressel H, Janson C, Koskela K, Oksa P, Sauni R, Uitti J, Moilanen E, Lehtimäki L (2017) Effects of growth and aging on the reference values of pulmonary nitric oxide dynamics in healthy subjects. J Breath Res 11:047103. https://doi.org/10.1088/1752-7163/aa7957

    Article  CAS  PubMed  Google Scholar 

  24. Ye Q, Dai H, Sarria R, Guzman J, Costabel U (2011) Increased expression of tumor necrosis factor receptors in cryptogenic organizing pneumonia. Respir Med 105:292–297. https://doi.org/10.1016/j.rmed.2010.10.022

    Article  PubMed  Google Scholar 

  25. Cai M, Bonella F, Dai H, Sarria R, Guzman J, Costabel U (2013) Macrolides inhibit cytokine production by alveolar macrophages in bronchiolitis obliterans organizing pneumonia. Immunobiology 218:930–937. https://doi.org/10.1016/j.imbio.2012.10.014

    Article  CAS  PubMed  Google Scholar 

  26. Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi A, Afshari JT, Sahebkar A (2018) Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol 233:6425–6440. https://doi.org/10.1002/jcp.26429

    Article  CAS  PubMed  Google Scholar 

  27. Kharitonov SA, Barnes PJ (2001) Exhaled markers of pulmonary disease. Am J Respir Crit Care Med 163:1693–1722. https://doi.org/10.1164/ajrccm.163.7.2009041

    Article  CAS  PubMed  Google Scholar 

  28. Kanamori H, Fujisawa S, Tsuburai T, Yamaji S, Tomita N, Fujimaki K, Miyashita A, Suzuki S, Ishigatsubo Y (2002) Increased exhaled nitric oxide in bronchiolitis obliterans organizing pneumonia after allogeneic bone marrow transplantation. Transplantation 74:1356–1358. https://doi.org/10.1097/00007890-200211150-00029

    Article  PubMed  Google Scholar 

  29. Enocson A, Hubbard R, McKeever T, Russell N, Byrne J, Das-Gupta E, Watson L, Fogarty AW (2013) The acute impact of a hematopoietic allograft on lung function and inflammation: a prospective observational study. BMC Pulm Med 13:2. https://doi.org/10.1186/1471-2466-13-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Moermans C, Poulet C, Henket M, Bonnet C, Willems E, Baron F, Beguin Y, Louis R (2013) Lung function and airway inflammation monitoring after hematopoietic stem cell transplantation. Respir Med 107:2071–2080. https://doi.org/10.1016/j.rmed.2013.10.013

    Article  CAS  PubMed  Google Scholar 

  31. Lahzami S, Schoeffel RE, Pechey V, Reid C, Greenwood M, Salome CM, Berend N, King GG (2011) Small airways function declines after allogeneic haematopoietic stem cell transplantation. Eur Respir J 38:1180–1188. https://doi.org/10.1183/09031936.00018311

    Article  CAS  PubMed  Google Scholar 

  32. Fazekas T, Eickhoff P, Lawitschka A, Knotek B, Pötschger U, Peters C (2012) Exhaled nitric oxide and pulmonary complications after paediatric stem cell transplantation. Eur J Pediatr 171:1095–1101. https://doi.org/10.1007/s00431-012-1692-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Köktürk N, Yıldırım F, Aydoğdu M, Akı ŞZ, Yeğin ZA, Özkurt ZN, Suyanı E, Kıvılcım Oğuzülgen İ, Türköz Sucak G (2016) Is it possible to predict pulmonary complications and mortality in hematopoietic stem cell transplantation recipients from pre-transplantation exhaled nitric oxide levels? Turk J Haematol 33:34–40. https://doi.org/10.4274/tjh.2014.0159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Suresh V, Shelley DA, Shin HW, George SC (2008) Effect of heterogeneous ventilation and nitric oxide production on exhaled nitric oxide profiles. J Appl Physiol (1985) 104:1743–1752. https://doi.org/10.1152/japplphysiol.01355.2007

    Article  CAS  Google Scholar 

  35. Lehtimäki L, Karvonen T, Högman M (2020) Clinical values of nitric oxide parameters from the respiratory system. Curr Med Chem 27:7189–7199. https://doi.org/10.2174/0929867327666200603141847

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank all the participants, physicians, and staff of the Yamaguchi University Hospital and the Yamaguchi-Ube Medical Center who participated in this study. The authors would also like to thank the radiological technologists of the Yamaguchi-Ube Medical Center for their kind assistance.

Author information

Authors and Affiliations

Authors

Contributions

Y.K., Y.N., and T.H. designed the study. Y.K. and Y.N. wrote the manuscript. Y.K. analyzed the data. All authors discussed the results and approved the final manuscript.

Corresponding author

Correspondence to Yukinori Nakamura.

Ethics declarations

Ethics approval

Approval was obtained from the Institutional Review Board of the Yamaguchi University Hospital (approval numbers: H28-175 and H2019-120). The study was conducted in accordance with the principles of the Declaration of Helsinki.

Consent to participate

Written informed consent was obtained from all individuals who participated in the study.

Consent to publish

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kajimura, Y., Nakamura, Y., Hirano, T. et al. Significance of alveolar nitric oxide concentration in the airway of patients with organizing pneumonia after allogeneic hematopoietic stem cell transplantation. Ann Hematol 101, 1803–1813 (2022). https://doi.org/10.1007/s00277-022-04868-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-022-04868-x

Keywords

Navigation