Skip to main content

Potential risk factors for the development from immune thrombocytopenia to systemic lupus erythematosus: a case–control study in Chinese children

A Correction to this article was published on 24 May 2022

This article has been updated

Abstract

Immune thrombocytopenia (ITP) patients are at risk developing to systemic lupus erythematosus (SLE) in the future. Our study attempted to explore the potential risk factors for the development from ITP to SLE in Chinese children by statistical analysis. This study was a retrospective case–control study. Patients diagnosed with ITP and developed to SLE after the diagnosis of ITP were defined as the case group. The control group consisted of children with ITP but without developing to SLE was recruited with a ratio of 1:2. Besides univariable analysis, multivariable logistic regression was built to evaluate the potential risk factors. A total of 150 children was included with 50 in the case group and 100 in the control group. Median developing time from ITP to SLE was 34.5 [IQR 12.5, 58.75] months. ANA was found significantly different between the two groups in our study in the univariable analysis but not in the multivariable analysis (OR = 4.50, 95% CI 0.97 to 21.01). Age diagnosed ITP was positively associated with SLE (OR = 1.07 every 5 years, 95% CI 1.01 to 1.15) with alert point at 8 years old (sensitivity 0.82, specificity 0.60). A lower level of complement was also positively associated with SLE (OR = 8.33, 95% CI 1.62 to 42.91). A minimum 3-year of close follow-up for pediatric ITP patients was recommended to monitor the risk for developing SLE. Older age and hypocomplementemia were potential risk factors for the development from ITP to SLE.

This is a preview of subscription content, access via your institution.

Fig. 1

Change history

References

  1. Swinkels M, Rijkers M, Voorberg J, Vidarsson G, Leebeek FWG, Jansen AJG (2018) Emerging concepts in immune thrombocytopenia. Front Immunol 30(9):880. https://doi.org/10.3389/fimmu.2018.00880

    CAS  Article  Google Scholar 

  2. Cines DB, Cuker A, Semple JW (2014) Pathogenesis of immune thrombocytopenia. Presse Med 43(4 Pt 2):e49-59. https://doi.org/10.1016/j.lpm.2014.01.010

    Article  PubMed  Google Scholar 

  3. Yong M, Schoonen WM, Li L, el al, (2010) Epidemiology of paediatric immune thromhocvtopenia in the general practice research database. Br J Haematol 149:855–864. https://doi.org/10.1111/j.1365-2141.2010.08176.x

    Article  PubMed  Google Scholar 

  4. Yehudai D, Toubi E, Shoenfeld Y, Vadasz Z (2013) Autoimmunity and novel therapies in immune-mediated thrombocytopenia. Semin Hematol 50(Suppl 1):S100–S108. https://doi.org/10.1053/j.seminhematol.2013.03.015

    CAS  Article  PubMed  Google Scholar 

  5. Abbasi SY, Milhem M, Zaru L (2008) A positive antinuclear antibody test predicts for a poor response to initial steroid therapy in adults with idiopathic thrombocytopenic purpura. Ann Hematol 87(6):459–462. https://doi.org/10.1007/s00277-008-0448-1

    CAS  Article  PubMed  Google Scholar 

  6. Chudwin DS, Ammann AJ, Cowan MJ et al (1983) Significance of a positive antinuclear antibody test in a pediatric population. Am J Dis Child 137:1103–1106. https://doi.org/10.1001/archpedi.1983.02140370063021

    CAS  Article  PubMed  Google Scholar 

  7. Lang BA, Silverman ED (1993) A clinical overview of systemic lupus erythematosus in childhood. Pediatr Rev 14:194–201. https://doi.org/10.1001/archpedi.1983.02140370063021

    CAS  Article  PubMed  Google Scholar 

  8. Nakamura RM, Bylund DJ (1994) Contemporary concepts for the clinical and laboratory evaluation of systemic lupus erythematosus and “lupus-like” syndromes. J Clin Lab Anal 8(6):347–359. https://doi.org/10.1002/jcla.1860080604

    CAS  Article  PubMed  Google Scholar 

  9. Deane PMG, Liard G, Siegel DM et al (1995) The outcome of children referred to a pediatric rheumatology clinic with a positive antinuclear antibody test but without an autoimmune disease. Pediatrics 95:892–895

    CAS  PubMed  Google Scholar 

  10. Barsalou J, Levy DM, Silverman ED (2013) An update on childhood-onset systemic lupus erythematosus. CurrOpinRheumatol 25(5):616–622. https://doi.org/10.1097/BOR.0b013e328363e868

    CAS  Article  Google Scholar 

  11. Biomarkers Definitions Working Group (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin PharmacolTher 69:89–95. https://doi.org/10.1067/mcp.2001.113989

    Article  Google Scholar 

  12. Chudwin DS, Ammann AJ, Cowan MJ, Wara DW (1983) Significance of a positive antinuclear antibody test in a pediatric population. Am J Dis Child 137(11):1103–1106. https://doi.org/10.1001/archpedi.1983.02140370063021

    CAS  Article  PubMed  Google Scholar 

  13. Liu Q, Xu H, Guan X, Shen Y, Wen X, Guo Y, Yu J, Su Y (2017) Clinical significance of antinuclear and antiextractable nuclear antigen antibody in childhood immune thrombocytopenia. Semin ThrombHemost 43(6):629–634. https://doi.org/10.1055/s-0037-1599146

    CAS  Article  Google Scholar 

  14. Zimmerman SA, Ware RE (1997) Clinical significance of the antinuclear antibody test in selected children with idiopathic thrombocytopenic purpura. J PediatrHematol Oncol 19(4):297–303. https://doi.org/10.1097/00043426-199707000-00006

    CAS  Article  Google Scholar 

  15. Hazzan R, Mukamel M, Yacobovich J, Yaniv I, Tamary H (2006) Risk factors for future development of systemic lupus erythematosus in children with idiopathic thrombocytopenic purpura. Pediatr Blood Cancer 47(5 Suppl):657–659. https://doi.org/10.1002/pbc.20970

    Article  PubMed  Google Scholar 

  16. Anderson MJ, Peebles CL, McMillan R, Curd JG (1985) Fluorescent antinuclear antibodies and anti-SS-A/Ro in patients with immune thrombocytopenia subsequently developing systemic lupus erythematosus. Ann Intern Med 103(4):548–550

    CAS  Article  Google Scholar 

  17. Perez HD, Katler E, Embury S (1985) Idiopathic thrombocytopenic purpura with high-titer, speckled pattern antinuclear antibodies: possible marker for systemic lupus erythematosus. Arthritis Rheum 28(5):596–597. https://doi.org/10.1002/art.1780280527

    CAS  Article  PubMed  Google Scholar 

  18. Panzer S, Penner E, Graninger W, Schulz E, Smolen JS (1989) Antinuclear antibodies in patients with chronic idiopathic autoimmune thrombocytopenia followed 2–30 years. Am J Hematol 32(2):100–103. https://doi.org/10.1002/ajh.2830320205

    CAS  Article  PubMed  Google Scholar 

  19. Kurata Y, Miyagawa S, Kosugi S, Kashiwagi H, Honda S, Mizutani H, Tomiyama Y, Kanayama Y, Matsuzawa Y (1994) High-titer antinuclear antibodies, anti-SSA/Ro antibodies and anti-nuclear RNP antibodies in patients with idiopathic thrombocytopenic purpura. ThrombHaemost 71(2):184–187

    CAS  Google Scholar 

  20. van Buuren S, Groothuis-Oudshoorn K, Vink G, et al (2021) Mice: multivariate imputation by chained equations. https://cran.r-project.org/web/packages/mice/index.html. Published 24 November 2021

  21. Mestanza PM, Ariza AR, Cardiel MH et al (1997) Thrombocytopenic purpura as initial manifestation of systemic lupus erythematosus. J Rheumatology 24:860–870

    Google Scholar 

  22. Zhu FX, Huang JY, Ye Z, Wen QQ, Wei JC (2020) Risk of systemic lupus erythematosus in patients with idiopathic thrombocytopenic purpura: a population-based cohort study. Ann Rheum Dis 79(6):793–799. https://doi.org/10.1136/annrheumdis-2020-217013

    Article  PubMed  Google Scholar 

  23. Goronzy JJ, Weyand CM (2003) Aging, autoimmunity and arthritis: T-cell senescence and contraction of T-cell repertoire diversity - catalysts of autoimmunity and chronic inflammation. Arthritis Res Ther 5(5):225–234. https://doi.org/10.1186/ar974

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Weiskopf D, Weinberger B, Grubeck-Loebenstein B (2009) The aging of the immune system. Transpl Int 22(11):1041–1050. https://doi.org/10.1111/j.1432-2277.2009.00927.x

    CAS  Article  PubMed  Google Scholar 

  25. Sheu TT, Chiang BL, Yen JH, Lin WC (2014) Premature CD4+ T cell aging and its contribution to lymphopenia-induced proliferation of memory cells in autoimmune-prone non-obese diabetic mice. PLoS ONE 9(2):e89379. https://doi.org/10.1371/journal.pone.0089379

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Zhu J, Wu F, Huang X (2013) Age-related differences in the clinical characteristics of systemic lupus erythematosus in children. Rheumatol Int 33(1):111–115. https://doi.org/10.1007/s00296-011-2354-4

    CAS  Article  PubMed  Google Scholar 

  27. Najaoui A, Bakchoul T, Stoy J et al (2012) Autoantibody-mediated complement activation on platelets is a common finding in patients with immune thrombocytopenic purpura (ITP). Eur J Haematol 88:167–174. https://doi.org/10.1111/j.1600-0609.2011.01718.x

    CAS  Article  PubMed  Google Scholar 

  28. Peerschke EI, Andemariam B, Yin W, Bussel JB (2010) Complement activa- tion on platelets correlates with a decrease in circulating immature platelets in patients with immune thrombocytopenic purpura. Br J Haematol 148:638–645. https://doi.org/10.1111/j.1365-2141.2009.07995.x

    Article  PubMed  Google Scholar 

  29. Kurata Y, Curd JG, Tamerius JD, McMillan R (1985) Platelet-associated complement in chronic ITP. Br J Haematol 60:723–733. https://doi.org/10.1111/j.1365-2141.1985.tb07477.x

    CAS  Article  PubMed  Google Scholar 

  30. Cheloff AZ, Kuter DJ, Al-Samkari H (2020) Serum complement levels in immune thrombocytopenia: characterization and relation to clinical features. Res Pract Thromb Haemost 4(5):807–812. https://doi.org/10.1002/rth2.12388

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Molina H (2002) Update on complement in the pathogenesis of systemic lupus erythematosus. Curr Opin Rheumatol 14(5):492–497. https://doi.org/10.1097/00002281-200209000-00002

    CAS  Article  PubMed  Google Scholar 

  32. Altintas A, Ozel A, Okur N et al (2007) Prevalence and clinical significance of elevated antinuclear antibody test in children and adult patients with idiopathic thrombocytopenic purpura. J Thromb Thrombolysis 24(2):163–168. https://doi.org/10.1007/s11239-007-0031-y

    Article  PubMed  Google Scholar 

  33. Wandstrat A, Carr-Johnson F, Branch V et al (2006) Autoantibody profiling to identify individuals at risk for systemic lupus erythematosus. J Autoimmun 27:153–160. https://doi.org/10.1016/j.jaut.2006.09.001

    CAS  Article  PubMed  Google Scholar 

  34. Grygiel-Górniak B, Rogacka N, Puszczewicz M (2018) Antinuclear antibodies in healthy people and non-rheumatic diseases - diagnostic and clinical implications. Reumatologia 56(4):243–248. https://doi.org/10.5114/reum.2018.77976

    Article  PubMed  PubMed Central  Google Scholar 

  35. Karen EH, Jon A, Alan JB (1998) Autoantibodies and common viral illnesses. Semin Arthritis Rheum 27:263–277. https://doi.org/10.1016/s0049-0172(98)80047-4

    Article  Google Scholar 

  36. Carbal DA, Petty RE, Fung M (1992) Persistent antinuclear antibodies in children without identifiable inflammatory, rheumatic or autimmune disease. Pediatrics 98:441–444

    Google Scholar 

  37. Bernstein S (2018) New lupus classification criteria presented at ACR/ARHP annual meeting. http://the-rheumatologist.org/article/new-lupus-classification-criteria-presented-acrarhp-annual-meeting. Accessed 19 January 2018

  38. Fairweather D, Frisancho-Kiss S, Rose NR (2008) Sex differences in autoimmune disease from a pathological perspective. Am J Pathol 173(3):600–609. https://doi.org/10.2353/ajpath.2008.071008

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Cutolo M, Sulli A, Seriolo B, Accardo S, Masi AT (1995) Estrogens, the immune response and autoimmunity. Clin Exp Rheumatol 13(2):217–226

    CAS  PubMed  Google Scholar 

  40. Cohen-Solal JF, Jeganathan V, Hill L, Kawabata D, Rodriguez-Pinto D, Grimaldi C, Diamond B (2008) Hormonal regulation of B-cell function and systemic lupus erythematosus. Lupus 17(6):528–532. https://doi.org/10.1177/0961203308089402

    CAS  Article  PubMed  Google Scholar 

  41. Cohen-Solal JF, Jeganathan V, Grimaldi CM, Peeva E, Diamond B (2006) Sex hormones and SLE: influencing the fate of autoreactive B cells. Curr Top Microbiol Immunol 305:67–88. https://doi.org/10.1007/3-540-29714-6_4

    CAS  Article  PubMed  Google Scholar 

  42. Lahita RG (1990) Sex hormones and the immune system–part 1. Human data Baillieres Clin Rheumatol 4(1):1–12. https://doi.org/10.1016/s0950-3579(05)80240-7

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Yuqing Song and Yuelun Zhang contributed equally to the article. Material preparation and data collection were performed by Yuqing Song and Jing Liu. Data analysis were performed by Yuqing Song and Yuelun Zhang. The first draft of the manuscript was written by Yuqing Song and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Juan Xiao or Hongmei Song.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: This article was originally published with the wrong supplemental files.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1.81 MB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Zhang, Y., Li, Z. et al. Potential risk factors for the development from immune thrombocytopenia to systemic lupus erythematosus: a case–control study in Chinese children. Ann Hematol 101, 1447–1456 (2022). https://doi.org/10.1007/s00277-022-04836-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-022-04836-5

Keywords

  • Immune thrombocytopenia
  • Systemic lupus erythematosus
  • Antinuclear antibody
  • Complement
  • Children