Skip to main content
Log in

A novel SPTB mutation causes hereditary spherocytosis via loss-of-function of β-spectrin

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Hereditary spherocytosis (HS) is the most frequently observed chronic non-immune hemolytic disorder caused by altered red cell membrane function. SPTB gene mutation is one of the most common causes of HS, but pathogenicity analyses and pathogenesis research on these mutations have not been widely conducted. In this study, a novel heterozygous mutation of the SPTB gene (c.1509_1518del; p.K503Nfs*67) was identified in a Chinese family with HS by whole-exome sequencing (WES) and was then confirmed by Sanger sequencing. Next, the pathogenicity and pathogenesis of this mutation were studied using peripheral blood. We found that this mutation disrupted the synthesis and localization of β-spectrin and weakened the interaction between β-spectrin and ankyrin, which may be caused by the nonsense-mediated mRNA degradation pathway. These changes lead to the transformation of discoid erythrocytes into spherocytes, resulting in hemolytic anemia. Therefore, we classified this novel mutation as a pathogenic mutation leading to loss-of-function of β-spectrin. It would be insightful to perform the same mutation test and to provide genetic counseling to other relatives of the proband. Our study increases the current understanding of the molecular mechanisms related to mutations in SPTB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

All data used in this study are available from the corresponding authors for request.

Code availability

Not applicable.

References

  1. Mohandas N, Gallagher PG (2008) Red cell membrane: past, present, and future. Blood 112(10):3939–3948. https://doi.org/10.1182/blood-2008-07-161166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Perrotta S, Gallagher PG, Mohandas N (2008) Hereditary spherocytosis. Lancet 372(9647):1411–1426. https://doi.org/10.1016/s0140-6736(08)61588-3

    Article  CAS  PubMed  Google Scholar 

  3. Bolton-Maggs PH, Langer JC, Iolascon A, Tittensor P, King MJ (2012) Guidelines for the diagnosis and management of hereditary spherocytosis–2011 update. Br J Haematol 156(1):37–49. https://doi.org/10.1111/j.1365-2141.2011.08921.x

    Article  PubMed  Google Scholar 

  4. Wang C, Cui Y, Li Y, Liu X, Han J (2015) A systematic review of hereditary spherocytosis reported in Chinese biomedical journals from 1978 to 2013 and estimation of the prevalence of the disease using a disease model. Intractable Rare Dis Res 4(2):76–81. https://doi.org/10.5582/irdr.2015.01002

    Article  PubMed  PubMed Central  Google Scholar 

  5. Barcellini W, Bianchi P, Fermo E, Imperiali FG, Marcello AP, Vercellati C et al (2011) Hereditary red cell membrane defects: diagnostic and clinical aspects. Blood Transfus 9(3):274–277. https://doi.org/10.2450/2011.0086-10

    Article  PubMed  PubMed Central  Google Scholar 

  6. Agarwal AM, Nussenzveig RH, Reading NS, Patel JL, Sangle N, Salama ME et al (2016) Clinical utility of next-generation sequencing in the diagnosis of hereditary haemolytic anaemias. Br J Haematol 174(5):806–814. https://doi.org/10.1111/bjh.14131

    Article  CAS  PubMed  Google Scholar 

  7. Delaunay J (2007) The molecular basis of hereditary red cell membrane disorders. Blood Rev 21(1):1–20. https://doi.org/10.1016/j.blre.2006.03.005

    Article  CAS  PubMed  Google Scholar 

  8. Da Costa L, Galimand J, Fenneteau O, Mohandas N (2013) Hereditary spherocytosis, elliptocytosis, and other red cell membrane disorders. Blood Rev 27(4):167–178. https://doi.org/10.1016/j.blre.2013.04.003

    Article  CAS  PubMed  Google Scholar 

  9. An X, Mohandas N (2008) Disorders of red cell membrane. Br J Haematol 141(3):367–375. https://doi.org/10.1111/j.1365-2141.2008.07091.x

    Article  CAS  PubMed  Google Scholar 

  10. Narla J, Mohandas N (2017) Red cell membrane disorders. Int J Lab Hematol 39(Suppl 1):47–52. https://doi.org/10.1111/ijlh.12657

    Article  PubMed  Google Scholar 

  11. Tole S, Dhir P, Pugi J, Drury LJ, Butchart S, Fantauzzi M et al (2020) Genotype-phenotype correlation in children with hereditary spherocytosis. Br J Haematol 191(3):486–496. https://doi.org/10.1111/bjh.16750

    Article  CAS  PubMed  Google Scholar 

  12. He BJ, Liao L, Deng ZF, Tao YF, Xu YC, Lin FQ (2018) Molecular genetic mechanisms of hereditary spherocytosis: current perspectives. Acta Haematol 139(1):60–66. https://doi.org/10.1159/000486229

    Article  CAS  PubMed  Google Scholar 

  13. Park J, Jeong DC, Yoo J, Jang W, Chae H, Kim J et al (2016) Mutational characteristics of ANK1 and SPTB genes in hereditary spherocytosis. Clin Genet 90(1):69–78. https://doi.org/10.1111/cge.12749

    Article  CAS  PubMed  Google Scholar 

  14. Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26(5):589–595. https://doi.org/10.1093/bioinformatics/btp698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhu Q, Ni Y, Wang J, Yin H, Zhang Q, Zhang L et al (2018) Identification of pathways and genes associated with cerebral palsy. Genes Genomics 40(12):1339–1349. https://doi.org/10.1007/s13258-018-0729-6

    Article  CAS  PubMed  Google Scholar 

  16. Schwarz JM, Cooper DN, Schuelke M, Seelow D (2014) MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods 11(4):361–362. https://doi.org/10.1038/nmeth.2890

    Article  CAS  PubMed  Google Scholar 

  17. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R et al (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46(W1):W296-w303. https://doi.org/10.1093/nar/gky427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu W, Xie Y, Ma J, Luo X, Nie P, Zuo Z et al (2015) IBS: an illustrator for the presentation and visualization of biological sequences. Bioinformatics 31(20):3359–3361. https://doi.org/10.1093/bioinformatics/btv362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Llaudet-Planas E, Vives-Corrons JL, Rizzuto V, Gómez-Ramírez P, Sevilla Navarro J, Coll Sibina MT et al (2018) Osmotic gradient ektacytometry: a valuable screening test for hereditary spherocytosis and other red blood cell membrane disorders. Int J Lab Hematol 40(1):94–102. https://doi.org/10.1111/ijlh.12746

    Article  CAS  PubMed  Google Scholar 

  20. Park SH, Park CJ, Lee BR, Cho YU, Jang S, Kim N et al (2014) Comparison study of the eosin-5’-maleimide binding test, flow cytometric osmotic fragility test, and cryohemolysis test in the diagnosis of hereditary spherocytosis. Am J Clin Pathol 142(4):474–484. https://doi.org/10.1309/ajcpo7v4ogxliipp

    Article  PubMed  Google Scholar 

  21. Vives-Corrons JL, Krishnevskaya E, Rodriguez IH, Ancochea A (2021) Characterization of hereditary red blood cell membranopathies using combined targeted next-generation sequencing and osmotic gradient ektacytometry. Int J Hematol 113(2):163–174. https://doi.org/10.1007/s12185-020-03010-9

    Article  CAS  PubMed  Google Scholar 

  22. King MJ, Garçon L, Hoyer JD, Iolascon A, Picard V, Stewart G et al (2015) ICSH guidelines for the laboratory diagnosis of nonimmune hereditary red cell membrane disorders. Int J Lab Hematol 37(3):304–325. https://doi.org/10.1111/ijlh.12335

    Article  PubMed  Google Scholar 

  23. Aggarwal A, Jamwal M, Sharma P, Sachdeva MUS, Bansal D, Malhotra P et al (2020) Deciphering molecular heterogeneity of Indian families with hereditary spherocytosis using targeted next-generation sequencing: first South Asian study. Br J Haematol 188(5):784–795. https://doi.org/10.1111/bjh.16244

    Article  CAS  PubMed  Google Scholar 

  24. Lee JH, Moon KR (2014) Coexistence of gilbert syndrome and hereditary spherocytosis in a child presenting with extreme jaundice. Pediatric Gastroenterol Hepatol Nutr 17(4):266–269. https://doi.org/10.5223/pghn.2014.17.4.266

    Article  Google Scholar 

  25. Yi Y, Dang X, Li Y, Zhao C, Tang H, Shi X (2018) Genetic diagnosis and pathogenic analysis of an atypical hereditary spherocytosis combined with UGT1A1 partial deficiency: a case report. Mol Med Rep 17(1):382–387. https://doi.org/10.3892/mmr.2017.7867

    Article  CAS  PubMed  Google Scholar 

  26. Lindeboom RGH, Vermeulen M, Lehner B, Supek F (2019) The impact of nonsense-mediated mRNA decay on genetic disease, gene editing and cancer immunotherapy. Nat Genet 51(11):1645–1651. https://doi.org/10.1038/s41588-019-0517-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mort M, Ivanov D, Cooper DN, Chuzhanova NA (2008) A meta-analysis of nonsense mutations causing human genetic disease. Hum Mutat 29(8):1037–1047. https://doi.org/10.1002/humu.20763

    Article  CAS  PubMed  Google Scholar 

  28. Liu HX, Cartegni L, Zhang MQ, Krainer AR (2001) A mechanism for exon skipping caused by nonsense or missense mutations in BRCA1 and other genes. Nat Genet 27(1):55–58. https://doi.org/10.1038/83762

    Article  CAS  PubMed  Google Scholar 

  29. Perrotta S, Della Ragione F, Rossi F, Avvisati RA, Di Pinto D, De Mieri G et al (2009) Beta-spectrin Bari: a truncated beta-chain responsible for dominant hereditary spherocytosis. Haematologica 94(12):1753–1757. https://doi.org/10.3324/haematol.2009.010124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the proband and his family for their participation.

Funding

The study was supported by the Gansu Key Laboratory of Genetics Study of Hematopathy (20JR10RA714) and the internal fund from The First Hospital of Lanzhou University (ldyyn2018-69 and ldyyn2020-17).

Author information

Authors and Affiliations

Authors

Contributions

Shan Li, Leyuan Mi, Kewang Xi, and Ting Liu performed the research, analyzed the results, and wrote the manuscript. Ping Guo, Xiaojing Chai, Li Lu, and Juan Li designed the study and substantively revised the manuscript. In addition, they intermediated the communication with the proband and his family and conducted a follow-up of two patients. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Juan Li.

Ethics declarations

Ethics approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent for publication

The participant has consented to the submission of the article to the journal.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 744 KB)

Supplementary file2 (XLSX 43 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Guo, P., Mi, L. et al. A novel SPTB mutation causes hereditary spherocytosis via loss-of-function of β-spectrin. Ann Hematol 101, 731–738 (2022). https://doi.org/10.1007/s00277-022-04773-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-022-04773-3

Keywords

Navigation